Câu hỏi:

12/01/2025 4,098 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Góc giữa hai đường thẳng \(SD\) và \(BC\) bằng

A. Góc giữa hai đường thẳng \(SD\) và \(DC\).

B. Góc giữa hai đường thẳng \(SD\) và \(AD\).

C. Góc giữa hai đường thẳng \(SD\) và \(BD\).

D. Góc giữa hai đường thẳng \(SD\) và \(SC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Cho hình chóp  S . A B C D  có đáy  A B C D  là hình bình hành. Góc giữa hai đường thẳng  S D  và  B C  bằng (ảnh 1)

Vì \(ABCD\) là hình bình hành nên \(AD//BC\).

Do đó \(\left( {SD,BC} \right) = \left( {SD,DA} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Trả lời: 90

Cho hình chóp  S . A B C D  có đáy  A B C D  là hình vuông. Gọi  H  là trung điểm của  A B  và  S H ⊥ ( A B C D ) , gọi  K  là trung điểm của cạnh  A D . Góc giữa hai đường thẳng  B K  và  S C  bằng bao nhiêu độ? (ảnh 1)

Vì \(\Delta ABK = \Delta BCH\) (\(AB = BC,AK = BH,\widehat {KAB} = \widehat {CBH} = 90^\circ \)) nên \(\widehat {BHC} = \widehat {BKA}\).

Có \(\widehat {ABK} + \widehat {BKA} = 90^\circ \Rightarrow \widehat {ABK} + \widehat {BHC} = 90^\circ \)\( \Rightarrow BK \bot CH\)(1).

Mà \(SH \bot \left( {ABCD} \right) \Rightarrow SH \bot BK\) (2).

Từ (1) và (2), ta có \(BK \bot \left( {SCH} \right) \Rightarrow BK \bot SC\).

Do đó \(\left( {BK,SC} \right) = 90^\circ \).

Câu 2

A. \(\left\{ \begin{array}{l}a \bot \left( \alpha \right)\\a \subset \left( \beta \right)\end{array} \right. \Rightarrow \left( \alpha \right) \bot \left( \beta \right)\).

B. \(\left\{ \begin{array}{l}a \bot b\\a \bot \left( \alpha \right)\end{array} \right. \Rightarrow b//\left( \alpha \right)\).

C. \(\left\{ \begin{array}{l}a \bot b\\a \subset \left( \alpha \right)\\b \subset \left( \beta \right)\end{array} \right. \Rightarrow \left( \alpha \right) \bot \left( \beta \right)\).

D. \(\left\{ \begin{array}{l}\left( \alpha \right) \bot \left( \beta \right)\\a \subset \left( \alpha \right)\\b \subset \left( \beta \right)\end{array} \right. \Rightarrow a \bot b\).

Lời giải

Đáp án đúng là: A

\(\left\{ \begin{array}{l}a \bot \left( \alpha \right)\\a \subset \left( \beta \right)\end{array} \right. \Rightarrow \left( \alpha \right) \bot \left( \beta \right)\).

Câu 4

A. \(\frac{5}{{2a}}\).

B. \(\frac{{5a}}{2}\).

C. \(\frac{2}{{5a}}\).

D. \(\frac{{2a}}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP