Câu hỏi:
12/01/2025 5,574Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\) và tam giác \(ABC\) vuông tại \(B\). Gọi \(H,K\) là hình chiếu vuông góc của \(A\) trên các cạnh \(SB,SC\). Khi đó:
a) \(SA \bot BC\).
b) Tam giác \(SBC\) cân tại \(B\).
c) \(AH\) vuông góc với mặt phẳng \(\left( {SBC} \right)\).
d) Giả sử \(HK\) cắt \(BC\) tại \(D\). Khi đó \(\left( {AC,AD} \right) = 90^\circ \).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Đ, b) S, c) Đ, d) Đ
a) Vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot BC\).
b) Ta có \(BC \bot AB\) (do \(\Delta ABC\) vuông tại \(B\)) và \(BC \bot SA\)
Suy ra \(BC \bot \left( {SAB} \right)\) \( \Rightarrow BC \bot SB\). Do đó \(\Delta SBC\) vuông tại \(B\).
c) Vì \(BC \bot \left( {SAB} \right)\) nên \(BC \bot AH\) mà \(AH \bot SB\) \( \Rightarrow AH \bot \left( {SBC} \right)\).
d) Vì \(AH \bot \left( {SBC} \right)\) nên \(AH \bot SC\).
Mà \(AK \bot SC\) nên \(SC \bot \left( {AHK} \right)\).
Lại có \(AD \subset \left( {AHK} \right) \Rightarrow SC \bot AD\)(1).
Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot AD\) (2).
Từ (1) và (2), ta có \(AD \bot \left( {SAC} \right) \Rightarrow AD \bot AC \Rightarrow \left( {AD,AC} \right) = 90^\circ \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một chiếc cột được dựng trên nền sân phẳng. Gọi \(O\) là điểm đặt chân cột trên mặt sân và \(M\) là điểm trên cột cách chân cột \(40\) cm. Trên mặt sân, người ta lấy hai điểm \(A\) và \(B\) đều cách \(O\) là \(30\) cm (\(A,B,O\) không thẳng hàng). Người ta đo độ dài \(MA\) và \(MB\) đều bằng 50 cm. Hỏi theo các số liệu trên, chiếc cột có vuông góc với mặt sân hay không?
Câu 2:
Trong không gian mặt phẳng \(\left( P \right)\) và đường thẳng \(d\) không vuông góc với mặt phẳng \(\left( P \right)\). Hãy chọn mệnh đề phát biểu đúng trong các mệnh đề dưới đây?
Câu 3:
Tìm \(a\) để hàm số \(y = {\log _a}x\left( {0 < a \ne 1} \right)\) có đồ thị là hình bên
Câu 4:
Cho hình chóp đều \(S.ABCD\). Gọi \(I\) là trung điểm của \(AB\), \(G\) là trọng tâm của tam giác \(SCD\). Trong các mệnh đề sau, mệnh đề nào đúng?
Câu 5:
Cho đường thẳng \(a\) và mặt phẳng \(\left( P \right)\) không vuông góc với nhau. Gọi \(a'\) là hình chiếu vuông góc của \(a\) lên mặt phẳng \(\left( P \right)\). Giả sử \(b\) là một đường thẳng nằm trong mặt phẳng \(\left( P \right)\) và \(b \bot a'\).
Khi đó
Câu 6:
Hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) được gọi là vuông góc với nhau nếu:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận