Câu hỏi:
23/01/2025 280
Cho hàm số \(y = a{x^2} + bx + c\left( {a,b,c \in \mathbb{R}} \right)\) có đồ thị như hình vẽ bên
a) Hàm số đồng biến trên \(\left( { - \infty ;0} \right)\).
b) Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ dương.
c) \(c > 0\).
d) \(a < 0;b > 0\).
Cho hàm số \(y = a{x^2} + bx + c\left( {a,b,c \in \mathbb{R}} \right)\) có đồ thị như hình vẽ bên

a) Hàm số đồng biến trên \(\left( { - \infty ;0} \right)\).
b) Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ dương.
c) \(c > 0\).
d) \(a < 0;b > 0\).
Quảng cáo
Trả lời:
a) Đ, b) S, c) Đ, d) Đ
a) Trên khoảng \(\left( { - \infty ;0} \right)\) đồ thị hàm số đi lên. Suy ra hàm số đồng biến trên \(\left( { - \infty ;0} \right)\).
b) Dựa vào đồ thị ta thấy đồ thị hàm số cắt trục hoành tại hai điểm có hoành độ trái dấu.
c) Vì đồ thị hàm số cắt \(Oy\) tại điểm nằm phía trên trục hoành nên \(c > 0\).
d) Vì bề lõm của \(\left( P \right)\) hướng xuống dưới nên \(a < 0\).
Lại có \(x = - \frac{b}{{2a}} > 0\) mà \(a < 0\) nên \(b > 0\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ, b) S, c) Đ, d) S
Đường tròn \(\left( C \right)\) có tâm \(I\left( {3; - 1} \right);R = 2\).
a) Ta có \(IA = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( { - 1 + 1} \right)}^2}} = 2 = R\). Suy ra điểm \(A\) thuộc đường tròn.
b) Ta có \(IB = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( {3 + 1} \right)}^2}} = 2\sqrt 5 > R\). Suy ra điểm \(B\) nằm ngoài đường tròn.
c) Có \(\overrightarrow {IA} = \left( { - 2;0} \right)\).
Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(A\) đi qua \(A\left( {1; - 1} \right)\) và nhận \(\overrightarrow n = \left( { - 1;0} \right)\) làm vectơ pháp tuyến có phương trình là \( - \left( {x - 1} \right) = 0 \Leftrightarrow x = 1\).
d) Giả sử tiếp tuyến qua \(B\) nhận \(\overrightarrow n = \left( {a;b} \right)\) làm vectơ pháp tuyến có phương trình là
\(a\left( {x - 1} \right) + b\left( {y - 3} \right) = 0\)\( \Leftrightarrow ax + by - a - 3b = 0\;\left( {\rm{d}} \right)\).
Vì \(d\left( {I,\left( d \right)} \right) = R\)\( \Leftrightarrow \frac{{\left| {a.3 + b.\left( { - 1} \right) - a - 3b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = 2\)\( \Leftrightarrow \left| {2a - 4b} \right| = 2\sqrt {{a^2} + {b^2}} \)\( \Leftrightarrow \left| {a - 2b} \right| = \sqrt {{a^2} + {b^2}} \)
\( \Leftrightarrow \left( {{a^2} - 4ab + 4{b^2}} \right) = {a^2} + {b^2}\)\( \Leftrightarrow - 4ab + 3{b^2} = 0\)\( \Leftrightarrow b\left( {3b - 4a} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}b = 0\\a = \frac{3}{4}b\end{array} \right.\).
TH1: \(b = 0\) chọn \(a = 1\). Suy ra phương trình tiếp tuyến cần tìm là \(x - 1 = 0\).
TH2: Chọn \(b = 4 \Rightarrow a = 3\). Suy ra phương trình tiếp tuyến cần tìm là \(3x + 4y - 15 = 0\).
Lời giải
Đáp án đúng là: B
\({y^4} = {x^3}\) không là hàm số theo biến \(x\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.