Câu hỏi:

25/01/2025 26

Biết giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{\sqrt {3{\rm{x}} + 3} - {\rm{m}}}}{{{\rm{x}} - 2}} = \frac{{\rm{a}}}{{\rm{b}}}\], m là số thực; a, b là các số nguyên và \[\frac{{\rm{a}}}{{\rm{b}}}\] tối giản. Tính a − b

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì\[\mathop {\lim }\limits_{{\rm{x}} \to 2} \left( {{\rm{x}} - 2} \right) = 0 \Rightarrow \]để\[\mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{\sqrt {3{\rm{x}} + 3} - {\rm{m}}}}{{{\rm{x}} - 2}} = \frac{{\rm{a}}}{{\rm{b}}}\]thì\[\mathop {\lim }\limits_{{\rm{x}} \to 2} \left( {\sqrt {3{\rm{x}} + 3} - {\rm{m}}} \right) = 0\]. Do đó x = 2 là nghiệm của phương trình \[\sqrt {3{\rm{x}} + 3} - {\rm{m}} = 0 \Rightarrow {\rm{m}} = 3\]

Với m = 3 ta được:

\[\mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{\sqrt {3{\rm{x}} + 3} - 3}}{{{\rm{x}} - 2}} = \mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{\left( {\sqrt {3{\rm{x}} + 3} - 3} \right)\left( {\sqrt {3{\rm{x}} + 3} + 3} \right)}}{{\left( {{\rm{x}} - 2} \right)\left( {\sqrt {3{\rm{x}} + 3} + 3} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{3{\rm{x}} - 6}}{{\left( {{\rm{x}} - 2} \right)\left( {\sqrt {3{\rm{x}} + 3} + 3} \right)}}\]

\[ = \mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{3\left( {{\rm{x}} - 2} \right)}}{{\left( {{\rm{x}} - 2} \right)\left( {\sqrt {3{\rm{x}} + 3} + 3} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{3}{{\left( {\sqrt {3{\rm{x}} + 3} + 3} \right)}} = \frac{1}{2}\]

\[ \Rightarrow {\rm{a}} = 1,{\rm{b}} = 2 \Rightarrow {\rm{a}} - {\rm{b}} = - 1\]Chọn đáp án C

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm giới hạn \[{\rm{A}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^{\rm{n}}} - 1}}{{{{\rm{x}}^{\rm{m}}} - 1}},{\rm{m}},{\rm{n}} \in {\mathbb{N}^ * }\]:

Xem đáp án » 25/01/2025 41

Câu 2:

Tính giới hạn của hàm số \[\mathop {\lim }\limits_{{\rm{x}} \to \infty } \frac{{{{\rm{x}}^3} + 3{{\rm{x}}^2} + 4}}{{2{{\rm{x}}^3}}}\]

Xem đáp án » 25/01/2025 39

Câu 3:

Cho hàm số \({\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}}{{{\rm{x}}^2} - 3\,\,{\rm{khi}}\,\,{\rm{x}} \ge 2}\\{{\rm{x}} - 1\,\,{\rm{khi}}\,\,{\rm{x}} < 2}\end{array}} \right.\). Chọn kết quả đúng của \[\mathop {\lim }\limits_{{\rm{x}} \to 2} {\rm{f}}\left( {\rm{x}} \right)\]

Xem đáp án » 25/01/2025 35

Câu 4:

Chọn đáp án đúng:

Giả sử \[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = L}}\] thì:

Xem đáp án » 25/01/2025 34

Câu 5:

Tính giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \left( {2 + {\rm{x}}} \right)\]

Xem đáp án » 25/01/2025 30

Câu 6:

Cho a, b là các số dương. Biết \[\mathop {\lim }\limits_{{\rm{x}} \to - \infty } \left( {\sqrt {9{{\rm{x}}^2} - {\rm{ax}}} + \sqrt[3]{{{\rm{27}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + 5}}}}} \right) = \frac{7}{{27}}\] . Tìm giá trị lớn nhất của a. b

Xem đáp án » 25/01/2025 30

Câu 7:

Chọn đáp án đúng:

Nếu \[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = L}},\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{g}}\left( {\rm{x}} \right){\rm{ = M}}\]thì:

Xem đáp án » 25/01/2025 29

Bình luận


Bình luận