Câu hỏi:
05/02/2025 776
Trong mặt phẳng \(Oxy\), cho điểm \(M( - 1;2)\)và 2 đường thẳng\({d_1}:x + 2y + 1 = 0;\,{d_2}:2x + y + 2 = 0\). Viết phương trình đường thẳng \(\Delta \) qua \(M( - 1;2)\)và cắt \({d_1},{d_2}\) lần lượt tại \(A,B\)sao cho \(MA = 2MB\).
Trong mặt phẳng \(Oxy\), cho điểm \(M( - 1;2)\)và 2 đường thẳng\({d_1}:x + 2y + 1 = 0;\,{d_2}:2x + y + 2 = 0\). Viết phương trình đường thẳng \(\Delta \) qua \(M( - 1;2)\)và cắt \({d_1},{d_2}\) lần lượt tại \(A,B\)sao cho \(MA = 2MB\).
Quảng cáo
Trả lời:
+ Ta có: \(\Delta \cap {d_1} = A \Rightarrow A \in {d_1} \Rightarrow A\left( { - 1 - 2a;a} \right)\).
\(\Delta \cap {d_2} = B \Rightarrow B \in {d_2} \Rightarrow B\left( {b; - 2 - 2b} \right)\).
+ Suy ra\(\overrightarrow {MA} = ( - 2a;a - 2);\overrightarrow {MB} = (b + 1; - 2b - 4)\).
+ đường thẳng \(\Delta \)qua \(M( - 1;2)\)và cắt \({d_1},{d_2}\) lần lượt tại \(A,B\) nên\(M,A,B\) thẳng hàng.
Lại có \(MA = 2MB\)suy ra\[\left[ \begin{array}{l}\overrightarrow {MA} = 2\overrightarrow {MB} \\\overrightarrow {MA} = - 2\overrightarrow {MB} \end{array} \right.\].
+ \[\overrightarrow {MA} = 2\overrightarrow {MB} \Leftrightarrow \left\{ \begin{array}{l} - 2a = 2(b + 1)\\a - 2 = 2( - 2b - 4)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{2}{3}\\b = - \frac{5}{3}\end{array} \right.\] .
Suy ra \(A\left( { - \frac{7}{3};\frac{2}{3}} \right);B\left( { - \frac{5}{3};\frac{4}{3}} \right)\). Suy ra phương trình đường thẳng \[\Delta :x - y + 3 = 0\] .
+ \[\overrightarrow {MA} = - 2\overrightarrow {MB} \Leftrightarrow \left\{ \begin{array}{l} - 2a = - 2(b + 1)\\a - 2 = - 2( - 2b - 4)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 2\\b = - 3\end{array} \right.\] .
Suy ra \(A\left( {3; - 2} \right);B\left( { - 3;4} \right)\). Suy ra phương trình đường thẳng \[\Delta :x + y - 1 = 0\] .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: −108
Điều kiện :\(n \ge 3;n \in N\)
\(A_n^3 + 2A_n^2 = 48 \Leftrightarrow \frac{{n!}}{{(n - 3)!}} + 2 \cdot \frac{{n!}}{{(n - 2)!}} = 48\)\( \Leftrightarrow n(n - 1)(n - 2) + 2.n(n - 1) = 48 \Leftrightarrow {n^3} - {n^2} - 48 = 0 \Leftrightarrow n = 4\) (thỏa)
Ta có \({(1 - 3x)^4} = \sum\limits_{k = 0}^4 {C_4^k} {( - 3x)^k} = \sum\limits_{k = 0}^4 {C_4^k} {( - 3)^k}{x^k}\).
Hệ số của \({x^3}\) trong khai triển trên ứng với \(k = 3\).
Vậy hệ số của \({x^3}\) trong khai triển \({(1 - 3x)^4}\) là \(C_4^3 \cdot {( - 3)^3} = - 108\).
Lời giải
Đáp án đúng là: B
Số hạng chứa \({x^2}\) là \(C_4^2{(2x)^2} = C_4^2 \cdot {2^2}{x^2} = 24{x^2}\). Vậy hệ số cần tìm là 24.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.