Câu hỏi:

14/02/2025 13,476 Lưu

Một tổ dự định may mỗi ngày \(50\) cái áo. Nhưng thực tế mỗi ngày tổ đã may được \(60\) cái áo. Do đó không những tổ đã hoàn thành trước một ngày mà còn làm thêm được \(20\) cái áo nữa. Tính số lượng áo mà tổ phải may theo dự định ban đầu.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(x\) (áo) là số áo dự định phải may của tổ đó \(\left( {x \in {\mathbb{N}^*}} \right)\).

Thời gian may dự định của tổ là \(\frac{x}{{50}}\) (ngày).

Thực tế số áo tổ đã may được là \(x + 20\) (áo).

Thời gian thực tế tổ may đã làm là \(\frac{{x + 20}}{{60}}\) (ngày).

Theo đề bài, ta có phương trình: \(\frac{x}{{50}} - \frac{{x + 20}}{{60}} = 1\).

Giải phương trình, ta có:

\(\frac{x}{{50}} - \frac{{x + 20}}{{60}} = 1\)

\(\frac{{6x}}{{300}} - \frac{{5\left( {x + 2} \right)}}{{300}} = 1\)

\(\frac{{6x - 5x - 100}}{{300}} = 1\)

\(\frac{{x - 100}}{{300}} = 1\)

\(x - 100 = 300\)

\(x = 400\) (thỏa mãn)

Vậy số lượng áo ban đầu tổ phải may là \(400\) chiếc.

Phúc Lê

Phúc Lê

Ko

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho biểu thức \(A = \left( {\frac{{a + 2}}{{a + 1}} - \frac{{a - 2}}{{a - 1}}} \right).\frac{{a + 1}}{a}\)\(B = \frac{3}{{{a^2} - 1}}\) với \(a \ne 0;a \ne 1;a \ne - 1\). Tìm giá trị của \(a\) để \(A = 2B\).

Lời giải

Đáp án: \(a = \frac{1}{2}\)

Với \(a \ne 0;a \ne 1;a \ne - 1\), ta có:

\(A = \left( {\frac{{a + 2}}{{a + 1}} - \frac{{a - 2}}{{a - 1}}} \right).\frac{{a + 1}}{a}\)

\(A = \left[ {\frac{{\left( {a + 2} \right)\left( {a - 1} \right)}}{{\left( {a - 1} \right)\left( {a + 1} \right)}} - \frac{{\left( {a - 2} \right)\left( {a + 1} \right)}}{{\left( {a - 1} \right)\left( {a + 1} \right)}}} \right].\frac{{a + 1}}{a}\)

\(A = \frac{{\left( {a + 2} \right)\left( {a - 1} \right) - \left( {a - 2} \right)\left( {a + 1} \right)}}{{\left( {a - 1} \right)\left( {a + 1} \right)}}.\frac{{a + 1}}{a}\)

\(A = \frac{{{a^2} + a - 2 - {a^2} + a + 2}}{{\left( {a - 1} \right)\left( {a + 1} \right)}}.\frac{{a + 1}}{a}\)

\(A = \frac{{2a}}{{\left( {a + 1} \right)\left( {a - 1} \right)}}.\frac{{a + 1}}{a} = \frac{2}{{a - 1}}\).

Để \(A = 2B\) thì \(\frac{2}{{a - 1}} = \frac{3}{{{a^2} - 1}}\) suy ra \(2\left( {{a^2} - 1} \right) = 3\left( {a - 1} \right)\)

Do đó, \(2\left( {a - 1} \right)\left( {a + 1} \right) - 3\left( {a - 1} \right) = 0\) hay \(\left( {a - 1} \right)\left( {2a + 2 - 3} \right) = 0\).

Suy ra \(\left( {a - 1} \right)\left( {2a - 1} \right) = 0\).

Suy ra \(a = 1\) (loại) hoặc \(a = \frac{1}{2}\) (thỏa mãn).

Vậy \(a = \frac{1}{2}\).

Lời giải

Đáp án đúng là:                a) Đ         b) Đ         c) Đ        d) S

Cho tam giác \(ABC\) vuông cân tại \(A\). Lấy \(D\) thuộc cạnh \(AC\), kẻ  (ảnh 1)

• Xét \(\Delta BAC\)\(\Delta BMN\)\(\widehat B\) chung và \(\widehat {BAC} = \widehat {BMN} = 90^\circ \) (gt)

Suy ra  (g.g)

Suy ra \(\frac{{BA}}{{BM}} = \frac{{BC}}{{BN}}\).

• Xét \(\Delta BAM\)\(\Delta BCN\) có: \(\frac{{BA}}{{BM}} = \frac{{BC}}{{BN}}\)\(\widehat {ABM} = \widehat {NBC}\) (góc chung)

Suy ra  (c.g.c).

• Có \(\Delta ABC\) vuông cân tại \(A\) nên theo định lí Pythagore, ta có:

\(A{B^2} + A{C^2} = B{C^2}\) hay \(2A{B^2} = B{C^2}\).

Ta có: \(\frac{{{S_{BAM}}}}{{{S_{BCN}}}} = \frac{{A{B^2}}}{{B{C^2}}} = \frac{1}{2}\) hay \({S_{BAM}} = \frac{1}{2}{S_{BCN}}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP