Câu hỏi:

14/02/2025 310

Cho biểu thức \(P = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 3x}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 4}}{x}.\)

a) Viết điều kiện xác định của biểu thức \(P.\)

b) Rút gọn biểu thức \(P.\)

c) Tìm số nguyên \(x\) để \(P\) nhận giá trị nguyên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có \({x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right).\)

Điều kiện xác định của biểu thức \(P\)\(x - 1 \ne 0,\) \(x + 1 \ne 0,\) \(x \ne 0\) hay \(x \ne 1,\) \(x \ne - 1\)\(x \ne 0.\)

Vậy điều kiện xác định của biểu thức \(P\)\(x \ne 1,\) \(x \ne - 1\)\(x \ne 0.\)

b) Với điều kiện \(x \ne 1,\) \(x \ne - 1\)\(x \ne 0,\) ta có:

\(P = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 3x}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 4}}{x}\)

\( = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2} + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\( = \frac{{{x^2} + 2x + 1 - \left( {{x^2} - 2x + 1} \right) + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\( = \frac{{4x + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\( = \frac{{{x^2} + x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\[ = \frac{{x\left( {x + 1} \right) \cdot \left( {x + 4} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right) \cdot x}}\]\[ = \frac{{x + 4}}{{x - 1}}.\]

Vậy với \(x \ne 1,\) \(x \ne - 1\)\(x \ne 0,\) thì \[P = \frac{{x + 4}}{{x - 1}}.\]

c) Với \(x \ne 1,\) \(x \ne - 1\)\(x \ne 0,\) ta có \[P = \frac{{x + 4}}{{x - 1}} = \frac{{x - 1 + 5}}{{x - 1}} = 1 + \frac{5}{{x - 1}}.\]

Với \(x\) nguyên, để \(P\) đạt giá trị nguyên thì \(\frac{{2025}}{{x - 1}}\) là số nguyên

Do đó \(5 \vdots \left( {x - 1} \right)\) hay \(x - 1 \in \)Ư\(\left( 5 \right) = \left\{ {1; - 1;5; - 5} \right\}.\)

Ta có bảng sau:

\(x - 1\)

\(1\)

\( - 1\)

\(5\)

\( - 5\)

\(x\)

\(2\)

\(0\)

\(6\)

\( - 4\)

Đối chiếu điều kiện

Thỏa mãn

Thỏa mãn

Thỏa mãn

Thỏa mãn

Vậy \(x \in \left\{ {1;0;6; - 4} \right\}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[x\] (học sinh) là số lượng học sinh đi tham quan \(\left( {x \in \mathbb{N}*} \right).\)

Số lượng giáo viên đi tham quan là: \[x - 27\] (giáo viên).

Giá vé của mỗi học sinh : \(\frac{x}{{36}}\) (người).

Do số shipper vận chuyển hàng giảm đi 3 người nên ta có phương trình:

                    \(\frac{x}{{30}} - \frac{x}{{36}} = 3\)

                    \[\left( {\frac{1}{{30}} - \frac{1}{{36}}} \right)x = 3\]

\(\frac{1}{{180}}x = 3\)

\(x = 540\) (thỏa mãn).

Vậy ngày 05/01/2025 công ty ABC giao cho khách 540 món hàng.

Câu 2

Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = a,\) \(AC = 3a.\) Trên cạnh \(AC\) lấy các điểm \(D,\,\,E\) sao cho \(AD = DE = EC.\)

a) Tính các tỉ số \(\frac{{DB}}{{DE}},\,\,\frac{{DC}}{{DB}}.\)

b) Chứng minh

c) Tính \(\widehat {AEB} + \widehat {ACB}.\)

d) Qua \(C\) kẻ đường thẳng vuông góc với \(BD\) và cắt \(BD\) tại \(I.\) Chứng minh \(BD \cdot BI + CD \cdot CA = B{C^2}.\)

Lời giải

 

a) Ta có:

\(AD = DE = EC = \frac{1}{3}AC = \frac{1}{3} \cdot 3a = a.\)

\(CD = DE + EC = a + a = 2a.\)

Xét \(\Delta ABD\) vuông tại \(A,\) theo định lí Pythagore ta có:

\(B{D^2} = A{B^2} + A{D^2} = {a^2} + {a^2} = 2{a^2}.\)

Suy ra \(BD = a\sqrt 2 .\)

Khi đó: \(\frac{{DB}}{{DE}} = \frac{{a\sqrt 2 }}{a} = \sqrt 2 \)\(\frac{{DC}}{{DB}} = \frac{{2a}}{{a\sqrt 2 }} = \sqrt 2 .\)

Cho tam giác ABC  vuông tại A  có AB = a , AC = 3a .   Trên cạnh AC  lấy các điểm D,E  sao cho  AD= DE= EC (ảnh 1)

b) Theo câu a ta có \(\frac{{DB}}{{DE}} = \frac{{DC}}{{DB}} = \sqrt 2 .\)

Xét \[\Delta BDE\]\[\Delta CDB\] có:

\(\widehat {CDB}\) là góc chung và \(\frac{{DB}}{{DE}} = \frac{{DC}}{{DB}}\)

Do đó  (c.g.c).

c) Từ câu c,  suy ra \(\widehat {DEB} = \widehat {DBC}\) (hai góc tương ứng).

Do đó \[\widehat {AEB} + \widehat {ACB} = \widehat {DBC} + \widehat {DCB}.\]

Xét \(\Delta BCD\)\(\widehat {ADB}\) là góc ngoài tại đỉnh \(D\) nên \(\widehat {ADB} = \widehat {DBC} + \widehat {DCB}.\)

\(\Delta ABD\) vuông tại \(A\)\(AB = AD = a\) nên là tam giác vuông cân tại \(A,\) do đó \(\widehat {ADB} = 45^\circ .\)

Suy ra \[\widehat {AEB} + \widehat {ACB} = \widehat {DBC} + \widehat {DCB} = \widehat {ADB} = 45^\circ .\]

Vậy \[\widehat {AEB} + \widehat {ACB} = 45^\circ .\]

d) Ta có: \(BD \cdot BI + CD \cdot CA = BD \cdot \left( {BD + DI} \right) + CD \cdot \left( {CD + AD} \right)\)

\( = B{D^2} + BD \cdot DI + C{D^2} + CD \cdot AD\)

\( = B{D^2} + BD \cdot DI + C{D^2} + CD \cdot AD\)

Xét \(\Delta ABD\)\(\Delta ICD\)\[\widehat {BAD} = \widehat {CID} = 90^\circ \]\(\widehat {ADB} = \widehat {IDC}\) (đối đỉnh).

Do đó  (g.g)

Suy ra \(\frac{{BD}}{{CD}} = \frac{{AD}}{{IC}}\) (tỉ số cạnh tương ứng), nên \(BD \cdot DI = CD \cdot AD.\)

Khi đó \(BD \cdot BI + CD \cdot CA = B{D^2} + 2BD \cdot DI + C{D^2}\)

\( = B{D^2} + 2BD \cdot DI + D{I^2} + C{D^2} - D{I^2}\)

\( = {\left( {BD + DI} \right)^2} + C{D^2} - D{I^2}\)

\( = B{I^2} + C{D^2} - D{I^2}\)

Xét \(\Delta ICD\) vuông tại \(I,\) theo định lí Pythagore ta có \(D{I^2} + I{C^2} = C{D^2}\)

Suy ra \(I{C^2} = C{D^2} - D{I^2},\) nên \(BD \cdot BI + CD \cdot CA = B{I^2} + I{C^2}.\)

Lại có, \(B{I^2} + I{C^2} = B{C^2}\) (áp dụng định lí Pythagore cho tam giác \(BIC\) vuông tại \(I).\)

Vậy \(BD \cdot BI + CD \cdot CA = B{C^2}.\)

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay