Câu hỏi:

14/02/2025 1,625

Gia đình ông Ba đi du lịch bằng xe hơi 7 chỗ. Họ phải lái xe \[100{\rm{ km}}\] trên đường thường và 240 km trên đường cao tốc. Tốc độ trên đường cao tốc hơn tốc độ trên đường thường là \[50\% .\] Gọi \(r\) (km/giờ) là tốc độ trên đường thường.

a) Hãy viết biểu thức tính thời gian mà gia đình ông Ba phải đi.

b) Hãy tính thời gian gia đình ông Ba phải đi nếu họ lái xe đúng theo giới hạn quy định tốc độ cho phép xe ô tô dưới 30 chỗ là 40 km/giờ khi lưu thông trên đường trong khu vực đông dân cư.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Tốc độ trên đường cao tốc là: \[r + 50\% \cdot r = 1,5r\] (giờ)

Thời gian gia đình ông Ba đi trên đoạn đường bình thường là: \(\frac{{100}}{r}\) (giờ).

Thời gian gia đình ông Ba đi trên đoạn đường cao tốc là: \(\frac{{240}}{{1,5r}} = \frac{{160}}{r}\) (giờ).

Thời gian gia đình ông Ba phải đi là: \(\frac{{100}}{r} + \frac{{160}}{r} = \frac{{260}}{r}\) (giờ).

b) Nếu họ lái xa đúng giới hạn ghi trên biển chỉ đường thì \(r = 40\) (km/giờ) và khi đó thời gian gia đình ông Ba phải đi là: \(\frac{{260}}{{40}} = 6,5\) (giờ) = 6 giờ 30 phút.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \(1 - {x^2} = - \left( {{x^2} - 1} \right) = - \left( {x - 1} \right)\left( {x + 1} \right).\)

Khi đó, điều kiện xác định của biểu thức \(B\) là \(\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\1 - {x^2} \ne 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\ - \left( {x - 1} \right)\left( {x + 1} \right) \ne 0\end{array} \right.,\) tức là \(\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\end{array} \right..\)

Vậy để \(B\) xác định thì \(x \ne 1\)\(x \ne - 1.\)

b) Với \(x \ne 1\)\(x \ne - 1\) ta có:

\(B = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{4}{{1 - {x^2}}}\)\( = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} - \frac{4}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)

\( = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2} - 4}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \frac{{\left( {{x^2} + 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right) - 4}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)

\( = \frac{{4x - 4}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \frac{{4\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \frac{4}{{x + 1}}\).

Vì vậy với \(x \ne 1\)\(x \ne - 1\) thì \(B = \frac{4}{{x + 1}}.\)

Với \(x = - \frac{1}{2}\) thoả mãn điều kiện xác định, thay vào biểu thức \(B = \frac{4}{{x + 1}},\) ta được:

\(B = \frac{4}{{ - \frac{1}{2} + 1}} = \frac{4}{{\frac{1}{2}}} = 8.\)

Vậy với \(x = - \frac{1}{2}\) thì \(B = 8.\)

c) Với \(x \ne 1\)\(x \ne - 1\) thì \(B = \frac{4}{{x + 1}}.\)

Với \(x\) là số nguyên, để \(B\) nhận giá trị nguyên thì \(x + 1\) là ước của \(4.\)

Mà Ư\(\left( 4 \right) = \left\{ {1;\,\, - 1;\,\,2;\,\, - 2;\,\,4;\,\, - 4} \right\}.\)

Ta có bảng sau:

\(x + 1\)

\(1\)

\( - 1\)

\(2\)

\( - 2\)

\(4\)

\( - 4\)

\(x\)

\(0\)

\( - 2\)

\(1\)

\( - 3\)

\(3\)

\( - 5\)

Do đó: \(x \in \left\{ { - 5;\,\, - 3;\,\, - 2;\,\,0;\,\,1;\,\,3} \right\}.\)

\(x \ne 1\)\(x \ne - 1\) nên \(x \in \left\{ { - 5;\,\, - 3;\,\, - 2;\,\,0;\,\,3} \right\}.\)

Vậy để \(B\) nhận giá trị nguyên thì \(x \in \left\{ { - 5;\,\, - 3;\,\, - 2;\,\,0;\,\,3} \right\}.\)

Lời giải

Từ \(D\) vẽ \(Dx \bot CD\) cắt tia \(AB\) tại \(E.\)

Xét tứ giác \(BCDE\)\(\widehat {BCD} = \widehat {CDE} = \widehat {CBE} = 90^\circ \) nên \(BCDE\) là hình chữ nhật.

Do đó \(DE = BC = 12{\rm{\;cm}},\,\,BE = CD = 6{\rm{\;cm}}.\)

\(AE = AB + BE = 10 + 6 = 16{\rm{\;cm}}.\)

Áp dụng định lí Pythagore cho \(\Delta ADE\) vuông tại \(E,\) ta được: \(A{D^2} = A{E^2} + D{E^2} = {16^2} + {12^2} = 400.\)

Suy ra \(AD = \sqrt {400} = 20{\rm{\;cm}}.\)

Một viên bi lăn từ vị trí \(A\) đến vị trí \(D\) theo đường gấp khúc \(ABCD\) hết 21 giây, biết rằng \ (ảnh 2)

Thời gian viên bi lăn theo đoạn thẳng \(AD\)\(\frac{{20 \cdot 21}}{{28}} = 15\) (giây).

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay