Tam giác \(ABC\) cân tại \(A,\) \(AB = AC = 100{\rm{\;cm}},\) \(BC = 120{\rm{\;cm}},\) các đường cao \(AD\) và \(BE\) cắt nhau tại \(H.\)
a) Tính độ dài đoạn thẳng \(AD.\) b) Chứng minh
c) Tính độ dài đoạn thẳng \(HD,\,\,HB.\) d) Tính độ dài đoạn thẳng \(HE.\)
Tam giác \(ABC\) cân tại \(A,\) \(AB = AC = 100{\rm{\;cm}},\) \(BC = 120{\rm{\;cm}},\) các đường cao \(AD\) và \(BE\) cắt nhau tại \(H.\)
a) Tính độ dài đoạn thẳng \(AD.\) b) Chứng minh
c) Tính độ dài đoạn thẳng \(HD,\,\,HB.\) d) Tính độ dài đoạn thẳng \(HE.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
|
a) Xét \(\Delta ABC\) cân tại \(A\) có đường cao \(AD\) nên đồng thời là đường trung tuyến, đo dó \(BD = CD = \frac{1}{2}BC = \frac{1}{2} \cdot 120 = 60{\rm{\;cm}}.\) Áp dụng định lí Pythagore cho \(\Delta ABD\) vuông tại \(D,\) ta có: |
![]() |
\(A{B^2} = A{D^2} + B{D^2},\) suy ra \(A{D^2} = A{B^2} - B{D^2} = {100^2} - {60^2} = 6\,\,400.\)
Do đó \(AD = \sqrt {6\,\,400} = 80{\rm{\;cm}}.\)
b) Xét \(\Delta BDH\) và \(\Delta ADC\) có:
\(\widehat {BDH} = \widehat {ADC} = 90^\circ \) và \(\widehat {HBD} = \widehat {DAC}\) (cùng phụ với \(\widehat {ECB}).\)
Do đó (g.g).
c) Theo câu b, suy ra \(\widehat {BHD} = \widehat {ACD}\) (hai góc tương ứng).
Mà \(\widehat {ABD} = \widehat {ACD}\) (do \(\Delta ABC\) cân tại \(A),\) nên \(\widehat {BHD} = \widehat {ABD}.\)
Xét \(\Delta BDH\) và \(\Delta ADB\) có:
\(\widehat {BDH} = \widehat {ADB} = 90^\circ \) và \(\widehat {BHD} = \widehat {ABD}\)
Do đó (g.g).
Suy ra \(\frac{{BD}}{{AD}} = \frac{{BH}}{{AB}} = \frac{{DH}}{{DB}}\) (tỉ số cạnh tương ứng).
Hay \(\frac{{60}}{{80}} = \frac{{BH}}{{100}} = \frac{{DH}}{{60}},\) suy ra \(BH = \frac{{60 \cdot 100}}{{80}} = 75{\rm{\;cm}}\) và \(DH = \frac{{60 \cdot 60}}{{80}} = 45{\rm{\;cm}}.\)
d) Ta có \(AH = AD - DH = 80 - 45 = 35{\rm{\;cm}}.\)
Xét \(\Delta BDH\) và \(\Delta BEC\) có:
\(\widehat {BDH} = \widehat {BEC} = 90^\circ \) và \(\widehat {EBC}\) là góc chung.
Do đó (g.g).
Xét \(\Delta BDH\) và \(\Delta AEH\) có:
\(\widehat {BDH} = \widehat {AHE} = 90^\circ \) và \(\widehat {BHD} = \widehat {AHE}\) (đối đỉnh).
Do đó (g.g).
Mà nên
Do đó \(\frac{{HE}}{{BD}} = \frac{{AH}}{{AB}}\) (tỉ số cạnh tương ứng), hay \(\frac{{HE}}{{60}} = \frac{{35}}{{100}},\) suy ra \(HE = \frac{{60 \cdot 35}}{{100}} = 21{\rm{\;}}\left( {{\rm{cm}}} \right).\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có \(1 - {x^2} = - \left( {{x^2} - 1} \right) = - \left( {x - 1} \right)\left( {x + 1} \right).\)
Khi đó, điều kiện xác định của biểu thức \(B\) là \(\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\1 - {x^2} \ne 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\ - \left( {x - 1} \right)\left( {x + 1} \right) \ne 0\end{array} \right.,\) tức là \(\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\end{array} \right..\)
Vậy để \(B\) xác định thì \(x \ne 1\) và \(x \ne - 1.\)
b) Với \(x \ne 1\) và \(x \ne - 1\) ta có:
\(B = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{4}{{1 - {x^2}}}\)\( = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} - \frac{4}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
\( = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2} - 4}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \frac{{\left( {{x^2} + 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right) - 4}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
\( = \frac{{4x - 4}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \frac{{4\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \frac{4}{{x + 1}}\).
Vì vậy với \(x \ne 1\) và \(x \ne - 1\) thì \(B = \frac{4}{{x + 1}}.\)
Với \(x = - \frac{1}{2}\) thoả mãn điều kiện xác định, thay vào biểu thức \(B = \frac{4}{{x + 1}},\) ta được:
\(B = \frac{4}{{ - \frac{1}{2} + 1}} = \frac{4}{{\frac{1}{2}}} = 8.\)
Vậy với \(x = - \frac{1}{2}\) thì \(B = 8.\)
c) Với \(x \ne 1\) và \(x \ne - 1\) thì \(B = \frac{4}{{x + 1}}.\)
Với \(x\) là số nguyên, để \(B\) nhận giá trị nguyên thì \(x + 1\) là ước của \(4.\)
Mà Ư\(\left( 4 \right) = \left\{ {1;\,\, - 1;\,\,2;\,\, - 2;\,\,4;\,\, - 4} \right\}.\)
Ta có bảng sau:
|
\(x + 1\) |
\(1\) |
\( - 1\) |
\(2\) |
\( - 2\) |
\(4\) |
\( - 4\) |
|
\(x\) |
\(0\) |
\( - 2\) |
\(1\) |
\( - 3\) |
\(3\) |
\( - 5\) |
Do đó: \(x \in \left\{ { - 5;\,\, - 3;\,\, - 2;\,\,0;\,\,1;\,\,3} \right\}.\)
Mà \(x \ne 1\) và \(x \ne - 1\) nên \(x \in \left\{ { - 5;\,\, - 3;\,\, - 2;\,\,0;\,\,3} \right\}.\)
Vậy để \(B\) nhận giá trị nguyên thì \(x \in \left\{ { - 5;\,\, - 3;\,\, - 2;\,\,0;\,\,3} \right\}.\)
Lời giải
|
Từ \(D\) vẽ \(Dx \bot CD\) cắt tia \(AB\) tại \(E.\) Xét tứ giác \(BCDE\) có \(\widehat {BCD} = \widehat {CDE} = \widehat {CBE} = 90^\circ \) nên \(BCDE\) là hình chữ nhật. Do đó \(DE = BC = 12{\rm{\;cm}},\,\,BE = CD = 6{\rm{\;cm}}.\) Có \(AE = AB + BE = 10 + 6 = 16{\rm{\;cm}}.\) Áp dụng định lí Pythagore cho \(\Delta ADE\) vuông tại \(E,\) ta được: \(A{D^2} = A{E^2} + D{E^2} = {16^2} + {12^2} = 400.\) Suy ra \(AD = \sqrt {400} = 20{\rm{\;cm}}.\) |
![]() |
Thời gian viên bi lăn theo đoạn thẳng \(AD\) là \(\frac{{20 \cdot 21}}{{28}} = 15\) (giây).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


