Câu hỏi:
15/02/2025 17Cho tam giác \(ABC\) vuông tại \(A\), biết \(AB = 21{\rm{ cm,}}\) \(AC = 28{\rm{ cm}}\), phân giác \(AD\) với \(D \in BC\).
a) Tính độ dài \(BC,BD,DC\).
b) Gọi \(E\) là hình chiếu của \(D\) trên \(AC\). Tính độ dài \(DE\) và \(EC\).
C) Gọi \(I\) là giao điểm của đường phân giác và \(G\) là trọng tâm tam giác \(ABC\). Chứng minh rằng \(IG\parallel AC.\)
Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Áp dụng định lí Pythagore vào tam giác \(ABC\), ta có:
\(A{B^2} + A{C^2} = B{C^2}\)
\({21^2} + {28^2} = B{C^2}\)
\(B{C^2} = 1225\) nên \(BC = 35{\rm{ cm}}\).
Xét \(\Delta ABC\) có \(AD\) là tia phân giác của góc \(BAC\) nên \(\frac{{DB}}{{AB}} = \frac{{DC}}{{AC}}\).
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{{DB}}{{AB}} = \frac{{DC}}{{AC}} = \frac{{DA + DC}}{{AB + AC}} = \frac{{BC}}{{AB + AC}} = \frac{{35}}{{21 + 28}} = \frac{5}{7}\).
Suy ra \(DB = \frac{5}{7}.AB = \frac{5}{7}.21 = 15{\rm{ cm}}\) và \(DC = \frac{5}{7}.AC = \frac{5}{7}.28 = 20{\rm{ cm}}\).
b) Vì \(E\) là hình chiếu của \(D\) trên \(AC\) nên \(DE \bot AC\).
Mà \(BA \bot AC\) (do \(\Delta ABC\) vuông tại \(A\)).
Do đó \(DE\parallel AB\).
Xét \(\Delta ABC\) có \(DE\parallel AB\) nên \(\frac{{EC}}{{AC}} = \frac{{DE}}{{AB}} = \frac{{DC}}{{BC}} = \frac{{20}}{{35}} = \frac{4}{7}\) (Hệ quả định lí Thalès)
Do đó, \(DE = \frac{4}{7}AB = \frac{4}{7}.21 = 12{\rm{ cm}}\) và \(EC = \frac{4}{7}AC = \frac{4}{7}.28 = 16{\rm{ cm}}\).
c) Gọi \(F\) là giao điểm của \(BI\) với \(AC\).
Vì \(I\) là giao điểm của ba đường phân giác nên \(BF\) là đường phân giác góc \(\widehat {ABC}\).
Do đó, \(\frac{{FA}}{{FC}} = \frac{{BA}}{{BC}} = \frac{{21}}{{35}} = \frac{3}{5}\).
Suy ra \(FA = \frac{3}{5}FC = \frac{3}{8}AC = \frac{{21}}{2}{\rm{ }}\left( {{\rm{cm}}} \right)\).
Có \(AI\) là đường phân giác của tam giác \(ABF\) nên có \(\frac{{BI}}{{FI}} = \frac{{AB}}{{AF}} = \frac{{21}}{{\frac{{21}}{2}}} = 2\) (1)
Gọi \(GB\) cắt \(AC\) tại \(M\).
Vì \(G\) là trọng tâm tam giác \(ABC\) nên \(BM\) là đường trung tuyến, do đó \(\frac{{GB}}{{GM}} = 2\) (2)
Từ (1) và (2) suy ra \(\frac{{GB}}{{GM}} = \frac{{IB}}{{IF}}\) suy ra \(IG\parallel FM\) hay \(IG\parallel AC\) (Theo định lí Thalès đảo).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho \(\Delta ABC\) có \(AD\) là trung tuyến, trọng tâm \(G\), đường thẳng đi qua \(G\) cắt các cạnh \(AB,\) \(AC\) lần lượt tại \(E,F\). Từ \(B,C\) kẻ các đường song song với \(EF\) cắt \(AD\) lần lượt tại \(M,N\).
a) \(\frac{{BE}}{{AE}} = \frac{{MG}}{{AG}}\).
b) \(\frac{{DN}}{{MD}} = \frac{{DB}}{{DC}}\).
c) \(\frac{{BE}}{{AE}} + \frac{{CF}}{{AF}} = 1\).
d) \(\frac{{AB}}{{AE}} + \frac{{CA}}{{AF}} = 3\).
Câu 2:
Cho các hình vẽ:
Đoạn thẳng \(MN\) là đường trung bình của tam giác \(ABC\) trong hình vẽ nào?
Câu 3:
Cho hai đường thẳng \(\left( {{d_1}} \right):y = 2x - 1\) và \(\left( {{d_2}} \right):y = - x + 2\).
a) Chứng tỏ rằng hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) cắt nhau. Xác định tọa độ giao điểm \(I\) của chúng và vẽ hai đường thẳng này trên cùng một hệ trục tọa độ.
b) Lập phương trình đường thẳng \(\left( {{d_3}} \right)\) đi qua \(I\) và song song với đường thẳng \(y = \frac{1}{2}x + 9.\)
Câu 5:
Bạn An vào siêu thị mua bút và vở hết \(25\) nghìn đồng. Nếu gọi \(x\) là số tiền để mua vở thì số thiền mua bút (nghìn đồng) là
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
10 Bài tập Nhận biết hai hình đồng dạng, hai hình đồng dạng phối cảnh (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
Cách tìm mẫu thức chung cực hay, nhanh nhất
10 Bài tập Ứng dụng của xác suất thực nghiệm trong một số bài toán đơn giản (có lời giải)
về câu hỏi!