Câu hỏi:
03/03/2025 4,691Cho đường tròn \[\left( O \right)\] đường kính \[AB.\] Gọi \[H\] là điểm nằm giữa \[O\] và \[B.\] Kẻ dây \[CD\] vuông góc với \[AB\] tại \[H.\] Trên cung nhỏ \[AC\] lấy điểm \[E\] bất kỳ \[\left( E \right.\] khác \[A\] và \[\left. C \right).\] Kẻ \[CK\] vuông góc với \[AE\] tại \[K.\] Đường thẳng \[DE\] cắt \[CK\] tại \[F.\]
a) Chứng minh tứ giác \[AHCK\] là tứ giác nội tiếp.
b) Chứng minh \[KH\] song song với \[ED\] và tam giác \[ACF\] là tam giác cân.
c) Tìm vị trí của điểm \[E\] để diện tích tam giác \[ADF\] lớn nhất.
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Vì \(CK \bot AK\) nên \(\widehat {AKC} = 90^\circ .\) Vì \(CH \bot AB\) tại \[H\] nên \(\widehat {AHC} = 90^\circ .\)
Gọi \(I\)là trung điểm \(AC\).
\(\Delta AKC\)có \(KI\) là trung tuyến ứng với cạnh huyền \(AC\) nên \(KI = OA = OC = \frac{1}{2}AC.\)
\(\Delta AHC\) có \(HI\) là trung tuyến ứng với cạnh huyền\(AC\) nên \(HI = IA = IC = \frac{1}{2}AC.\)
Do đó \(IA = IK = IC = IH.\)
Vậy bốn điểm
\(A,\,\,H,\,\,C,\,\,K\) cùng nằm trên cùng một đường tròn tâm \(I\) hay tứ giác \[AHCK\] nội tiếp.
b) Vì \[AHCK\] là tứ giác nội tiếp nên \(\widehat {CHK} = \widehat {CAK} = \widehat {CAE}\) (góc nội tiếp cùng chắn cung \[KC).\]
Lại có \[ADCE\]nội tiếp nên \(\widehat {CAE} = \widehat {CDE}\) (góc nội tiếp cùng chắn cung \[EC).\]
Từ đó suy ra \(\widehat {CHK} = \widehat {CDE}\) nên \(HK\,{\rm{//}}\,DE\) (đpcm).
Do \(HK\,{\rm{//}}\,DE\), mà \[H\] là trung điểm \[CD\] (quan hệ vuông góc của đường kính \[AB\] với dây \[CD\] tại \[H).\]
Suy ra \[HK\] là đường trung bình của tam giác \[CDF\] nên \[K\] là trung điểm \[FC\].
Tam giác \[AFC\] có \[AK\] là đường cao đồng thời cũng là trung tuyến.
Do đó tam giác \[CAF\]là tam giác cân tại \[K\] (đpcm).
c) Tam giác \[FAC\] cân tại \[A\] nên \[AF = AC.\]
Dễ thấy tam giác \[ACD\] cân tại \[A\] nên \[AC = AD\].
Từ đó suy ra \[AF = AD\] hay tam giác \[AFD\] cân tại \[A\], hạ \[DI \bot AF\] .
Ta có \({S_{AFD}} = \frac{1}{2}DI \cdot AF = \frac{1}{2}DI \cdot AC\).
Do \[AC\] không đổi nên \({S_{AFD}}\) lớn nhất khi và chỉ khi \[DI\] lớn nhất.
Trong tam giác vuông \[AID\] ta có:
\(ID \le AD = AC\) hay \({S_{AFD}} = \frac{1}{2}DI \cdot AF = \frac{1}{2}DI \cdot AC \le \frac{{A{C^2}}}{2}\).
Dấu xảy ra khi và chỉ khi \(I \equiv A\), khi đó \[\widehat {DAF} = 90^\circ \] nên tam giác \[ADF\] vuông cân tại \[A\], suy ra \(\widehat {EBA} = \widehat {EDA} = 45^\circ \) hay \[E\] là điểm chính giữa cung \[AB.\]
Vậy để diện tích tam giác \[ADF\] lớn nhất thì \[E\] là điểm chính giữa cung \[AB.\]
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
B. Tự luận
1. Sau khi điều tra về số học sinh trong \[100\] lớp học (đơn vị: học sinh), người ta có bảng tần số ghép nhóm như ở bảng sau:
Nhóm |
\[\left[ {36\,\,;\,\,38} \right)\] |
\[\left[ {38\,\,;\,\,40} \right)\] |
\[\left[ {40\,\,;\,\,42} \right)\] |
\[\left[ {42\,\,;\,\,44} \right)\] |
\[\left[ {44\,\,;\,\,46} \right)\] |
Tần số \[\left( n \right)\] |
\[20\] |
\[15\] |
\[25\] |
\[30\] |
\[10\] |
a) Tìm tần số tương đối của mỗi nhóm đó.
b) Lập bảng tần số tương đối ghép nhóm và vẽ biểu đồ tần số tương đối ghép nhóm ở dạng biểu đồ cột của mẫu số liệu ghép nhóm đó.
2. Viết một số tự nhiên có chẵn có ba chữ số. Xét biến cố \(A:\) “Số tự nhiên là bội của 11”. Tính xác suất của biến cố \(A.\)
Câu 2:
Một phân xưởng theo kế hoạch cần sản xuất \(1\,505\) sản phẩm trong một số ngày quy định. Do mỗi ngày phân xưởng đó vượt mức \(86\) sản phẩm nên phân xưởng đó đã hoàn thành kế hoạch sớm hơn thời gian quy định là \(2\) ngày. Hỏi theo kế hoạch thì mỗi ngày phân xưởng đó cần sản xuất bao nhiêu sản phẩm?
Câu 3:
Nón Huế là một hình nón có đường kính đáy bằng \[40\,\,{\rm{cm,}}\] độ dài đường sinh là \[30\,\,{\mathop{\rm cm}\nolimits} \]. Người ta lát mặt xung quanh hình nón bằng ba lớp lá khô. Tính diện tích lá cần dùng để tạo nên một chiếc nón Huế như vậy (kết quả làm tròn đến hàng đơn vị với đơn vị \[{\rm{c}}{{\rm{m}}^2}).\]
Câu 4:
Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + 2m - 8 = 0\) (\[m\] là tham số, \[x\] là biến số).
a) Phương trình đã cho là phương trình bậc hai một ẩn.
b) Với \[m = 2\] ta có phương trình có nghiệm \({x_1} = 1\) và \({x_2} = 3\).
c) Phương trình luôn có hai nghiệm \({x_1},\,\,{x_2}\) với mọi \(m\).
d) Tổng hai nghiệm của phương trình là \( - 2m - 2.\)
Câu 5:
Một chi tiết xây dựng bằng bê tông có kích thước như hình vẽ bên, gồm:
− Phía trên là một hình trụ có chiều cao \(2\,\,{\rm{m}},\) đường kính đáy \(0,5\,\,{\rm{m}}.\)
− Phía dưới là nửa hình cầu có đường kính \(0,5\,\,{\rm{m}}.\)
Mỗi xe trộn bê tông cung cấp được \(6\,\,{{\rm{m}}^{\rm{3}}}\) bê tông. Một công trình xây dựng cần sử dụng 40 chi tiết như ở câu a thì cần ít nhất bao nhiêu xe để đáp ứng được nhu cầu?
a) Thể tích hình cầu có bán kính đáy \(R,\) được tính bằng công thức: \(V = \frac{4}{3}\pi {R^3}.\)
b) Bán kính đường tròn đáy của hình trụ là \(0,5\,\,{\rm{m}}.\)
c) Thể tích của chi tiết chi tiết xây dựng bằng bê tông là: \(\frac{{13\pi }}{{96}}\,\,{{\rm{m}}^{\rm{3}}}{\rm{.}}\)
d) Một công trình xây dựng cần sử dụng 40 chi tiết xây dựng bằng bê tông như ở hình trên thì cần ít nhất 2 xe để đáp ứng được nhu cầu.
Câu 6:
Tập hợp A có 30 số chẵn và một số số lẻ. Bạn An chọn ngẫu nhiên một số từ tập hợp \(A.\) Biết rằng xác suất của biến cố “Chọn được số chia hết cho 2” là \[0,4.\] Hỏi tập hợp \(A\) có bao nhiêu phần tử?
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
123 bài tập Nón trụ cầu và hình khối có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận
100dayyu Dao
10:47 - 07/05/2025
tại sao ac lại cố định vậy ạ