Câu hỏi:
10/03/2025 5,906Cổng trường Đại học Bách khoa Hà Nội có dạng một parabol, khoảng cách giữa hai chân cổng là 8 m và chiều cao của cổng tính từ một điểm trên mặt đất cách chân cổng là 0,5 m là 2,93 m. Tính chiều cao của cổng parabol đó?
Quảng cáo
Trả lời:
Hướng dẫn giải
Chọn hệ trục tọa độ \(Oxy\) sao cho một chân cổng đặt tại gốc tọa độ, chân còn lại đặt trên tia \(Ox\). Khi đó cổng parabol là một phần của đồ thị hàm số dạng \(y = a{x^2} + bx\).
Vì parabol đi qua các điểm có tọa độ \(A\left( {8;0} \right)\) và \(B\left( {0,5;2,93} \right)\) nên ta có hệ
\(\left\{ \begin{array}{l}a{.8^2} + b.8 = 0\\a.0,{5^2} + b.0,5 = 2,93\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{{293}}{{375}}\\b = \frac{{2344}}{{375}}\end{array} \right.\). Suy ra \(\left( P \right):y = - \frac{{293}}{{375}}{x^2} + \frac{{2344}}{{375}}x\).
Hàm số có đỉnh \(I\left( {4;\frac{{4688}}{{375}}} \right)\). Suy ra chiều cao của cổng là \(\frac{{4688}}{{375}}\) m.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) S, b) Đ, c) Đ, d) S
a) Ta có \(n\left( \Omega \right) = C_{15}^4 = 1365\).
b) Có \(n\left( A \right) = C_4^2.C_6^1.C_5^1 + C_4^2.C_6^2 + C_4^2.C_5^2 = 330\).
c) Số cách chọn được 4 quả cầu có ít nhất 3 quả xanh là \(C_4^3.C_6^1 + C_4^3.C_5^1 + C_4^4 = 45\).
Xác suất chọn được 4 quả cầu có ít nhất 3 quả xanh là \(\frac{{45}}{{1365}} = \frac{3}{{91}}\).
d) Số cách chọn 4 quả cầu không có quả màu đỏ là: \(C_4^1.C_5^3 + C_4^2.C_5^2 + C_4^3.C_5^1 = 90\).
Xác suất chọn được 4 quả cầu không có quả màu đỏ là \(\frac{{90}}{{1365}} = \frac{6}{{91}}\).
Suy ra xác suất để chọn được 4 quả cầu trong đó có ít nhất 1 quả đỏ là \(1 - \frac{6}{{91}} = \frac{{85}}{{91}}\).
Lời giải
Hướng dẫn giải
Trả lời: 0,32
Gọi \(\Omega \) là không gian mẫu.
Có 9 cách lấy ra 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai. Sau khi bỏ thì số viên bi trong hộp thứ hai là 13 viên. Khi đó có \(C_{13}^2\) cách lấy 2 viên bi từ hộp thứ hai.
Suy ra số phần tử không gian mẫu là \(n\left( \Omega \right) = 9C_{13}^2\).
Gọi \(A\) là biến cố: “Lấy được từ hộp thứ hai 2 viên bi trắng”.
TH1: Lấy được 1 viên bi xanh từ hộp thứ nhất bỏ vào hộp thứ hai.
Có 4 cách lấy ra một viên bi xanh từ hộp thứ nhất bỏ vào hộp thứ hai. Sau khi bỏ viên bi xanh lấy từ hộp thứ nhất vào hộp thứ hai thì số bi trắng trong hộp thứ hai vẫn là \(7\). Khi đó có \(C_7^2\) cách lấy hai viên bi trắng từ hộp thứ hai. Suy ra trong trường hợp này có \(4C_7^2\) cách.
TH2: Lấy được 1 viên bi trắng từ hộp thứ nhất bỏ vào hộp thứ hai.
Có 5 cách lấy ra một viên bi trắng từ hộp thứ nhất bỏ vào hộp thứ hai. Sau khi bỏ viên bi trắng lấy từ hộp thứ nhất vào hộp thứ hai thì số bi trắng trong hộp thứ hai là 8. Khi đó có \(C_8^2\) cách lấy 2 viên bi trắng từ hộp thứ hai. Suy ra trong trường hợp này có \(5C_8^2\) cách.
Suy ra \(n\left( A \right) = 4C_7^2 + 5C_8^2\) cách.
Do đó xác suất cần tính là \(P = \frac{{4C_7^2 + 5C_8^2}}{{9C_{13}^2}} = \frac{{112}}{{351}} \approx 0,32\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Tìm hệ số, số hạng trong khai triển nhị thức Newton (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
15 câu Trắc nghiệm Toán 10 chân trời sáng tạo Không gian mẫu và biến cố có đáp án
Tram Ngoc
tính như nào ra được đỉnh I ( 4,4688/375) v ạ?