Câu hỏi:

10/03/2025 167

Cho \(n\) là số nguyên dương thỏa mãn \(C_n^1 + C_n^2 = 15\). Tìm số hạng không chứa \(x\) trong khai triển \({\left( {x + \frac{2}{{{x^4}}}} \right)^n}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Điều kiện: \(n \ge 2,n \in \mathbb{N}\).

Ta có \(C_n^1 + C_n^2 = 15\)\( \Leftrightarrow n + \frac{{n\left( {n - 1} \right)}}{2} = 15\)\( \Leftrightarrow {n^2} + n - 30 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}n = 5\\n = - 6\end{array} \right.\)\( \Rightarrow n = 5\).

Với \(n = 5\) ta có \({\left( {x + \frac{2}{{{x^4}}}} \right)^5} = {x^5} + 5.{x^4}.\frac{2}{{{x^4}}} + 10.{x^3}.{\left( {\frac{2}{{{x^4}}}} \right)^2} + 10.{x^2}.{\left( {\frac{2}{{{x^4}}}} \right)^3} + 5.x.{\left( {\frac{2}{{{x^4}}}} \right)^4} + {\left( {\frac{2}{{{x^4}}}} \right)^5}\)

\( = {x^5} + 10 + \frac{{40}}{{{x^5}}} + \frac{{80}}{{{x^{10}}}} + \frac{{80}}{{{x^{15}}}} + \frac{{32}}{{{x^{20}}}}\).

Số hạng không chứa \(x\) trong khai triển trên là \(10\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Không gian mẫu \(n\left( \Omega \right) = C_{18}^3 = 816\).

Gọi C là biến cố: “Chọn được nhiều nhất hai viên bi xanh”.

Th1: Chọn 2 bi xanh và 1 bi trong 6 bi đỏ và 7 bi vàng có \(C_5^2.C_{13}^1 = 130\) cách.

Th2: Chọn 1 bi xanh và 2 bi trong 6 bi đỏ và 7 bi vàng có \(C_5^1.C_{13}^2 = 390\) cách.

Th3: Chọn 0 bi xanh và 3 bi trong 6 bi đỏ và 7 bi vàng có \(C_{13}^3 = 286\) cách.

Suy ra \(n\left( C \right) = 130 + 390 + 286 = 806\).

Xác suất của biến cố \(C\) là \(P\left( C \right) = \frac{{806}}{{816}} = \frac{{403}}{{408}}\).

Lời giải

Hướng dẫn giải

Trả lời: 49

Hai thẻ lấy ra có tổng là một số chẵn khi 2 số đó cùng chẵn hoặc cùng lẻ.

Từ 1 đến 15 có 7 số chẵn và 8 số lẻ.

Số kết quả thuận lợi cho biến cố là \(C_7^2 + C_8^2 = 49\).

Câu 4

Tập hợp tất cả các kết quả có thể xảy ra khi thực hiện phép thử thì gọi là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay