Câu hỏi:

10/03/2025 181

Cho \(n\) là số nguyên dương thỏa mãn \(C_n^1 + C_n^2 = 15\). Tìm số hạng không chứa \(x\) trong khai triển \({\left( {x + \frac{2}{{{x^4}}}} \right)^n}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Điều kiện: \(n \ge 2,n \in \mathbb{N}\).

Ta có \(C_n^1 + C_n^2 = 15\)\( \Leftrightarrow n + \frac{{n\left( {n - 1} \right)}}{2} = 15\)\( \Leftrightarrow {n^2} + n - 30 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}n = 5\\n = - 6\end{array} \right.\)\( \Rightarrow n = 5\).

Với \(n = 5\) ta có \({\left( {x + \frac{2}{{{x^4}}}} \right)^5} = {x^5} + 5.{x^4}.\frac{2}{{{x^4}}} + 10.{x^3}.{\left( {\frac{2}{{{x^4}}}} \right)^2} + 10.{x^2}.{\left( {\frac{2}{{{x^4}}}} \right)^3} + 5.x.{\left( {\frac{2}{{{x^4}}}} \right)^4} + {\left( {\frac{2}{{{x^4}}}} \right)^5}\)

\( = {x^5} + 10 + \frac{{40}}{{{x^5}}} + \frac{{80}}{{{x^{10}}}} + \frac{{80}}{{{x^{15}}}} + \frac{{32}}{{{x^{20}}}}\).

Số hạng không chứa \(x\) trong khai triển trên là \(10\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Không gian mẫu \(n\left( \Omega \right) = C_{18}^3 = 816\).

Gọi C là biến cố: “Chọn được nhiều nhất hai viên bi xanh”.

Th1: Chọn 2 bi xanh và 1 bi trong 6 bi đỏ và 7 bi vàng có \(C_5^2.C_{13}^1 = 130\) cách.

Th2: Chọn 1 bi xanh và 2 bi trong 6 bi đỏ và 7 bi vàng có \(C_5^1.C_{13}^2 = 390\) cách.

Th3: Chọn 0 bi xanh và 3 bi trong 6 bi đỏ và 7 bi vàng có \(C_{13}^3 = 286\) cách.

Suy ra \(n\left( C \right) = 130 + 390 + 286 = 806\).

Xác suất của biến cố \(C\) là \(P\left( C \right) = \frac{{806}}{{816}} = \frac{{403}}{{408}}\).

Lời giải

Hướng dẫn giải

Trả lời: 49

Hai thẻ lấy ra có tổng là một số chẵn khi 2 số đó cùng chẵn hoặc cùng lẻ.

Từ 1 đến 15 có 7 số chẵn và 8 số lẻ.

Số kết quả thuận lợi cho biến cố là \(C_7^2 + C_8^2 = 49\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP