Câu hỏi:

17/03/2025 233

Cho \(\Delta ABC\), trung tuyến \(AM\), đường phân giác của \(\widehat {AMB}\) cắt \(AB\)\(D\), đường phân giác \(\widehat {AMC}\) cắt \(AC\)\(E.\) Gọi \(I\) là giao điểm của \(AM\)\(DE\). Biết \(BC = 30{\rm{ cm, }}AM = 10{\rm{ cm}}{\rm{.}}\)

 a) \(\frac{{BD}}{{AD}} = \frac{{MB}}{{MA}}.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đúng

Câu hỏi cùng đoạn

Câu 2:

 b) \(DE\parallel BC\).

Xem lời giải

verified Lời giải của GV VietJack

Đúng

Câu 3:

c) \(DI = EI.\)

Xem lời giải

verified Lời giải của GV VietJack

Đúng

Câu 4:

d) \(ED = 6{\rm{ cm}}{\rm{.}}\)

Xem lời giải

verified Lời giải của GV VietJack

Sai

d) \(ED = 6{\rm{ cm}}{\rm{.}}\) (ảnh 1)

Ta có: \(\frac{{BD}}{{AD}} = \frac{{MB}}{{MA}}\) do \(MD\) là tia phân giác của \(\widehat {AMB}\).

         \(\frac{{CE}}{{AE}} = \frac{{MC}}{{MA}}\) do \(ME\) là tia phân giác của \(\widehat {AMC}.\)

\(MB = MC\) (\(M\) là trung điểm của \(BC\))

Suy ra \(\frac{{BD}}{{AD}} = \frac{{CE}}{{AE}}\), suy ra theo định lí Thalès đảo ta có \(DE\parallel BC\).

Xét \(\Delta ABM\)\(\Delta ACM\) lần lượt có \(DI\parallel BM\)\(EI\parallel CM\).

Do đó, \(\frac{{DI}}{{BM}} = \frac{{EI}}{{CM}} = \frac{{AI}}{{AM}}\).

\(BM = CM\) suy ra \(DI = EI.\)

Ta có: \(\frac{{BD}}{{AD}} = \frac{{MB}}{{MA}}\)\(\frac{{BD}}{{AD}} = \frac{{MI}}{{AI}}\) (do \(DI\parallel BM\)) suy ra \(\frac{{MI}}{{AI}} = \frac{{MB}}{{MA}}\).

Lại có \(\frac{{MA}}{{AI}} = \frac{{MB}}{{DI}}\) (do \(DI\parallel BM\))

Do đó, \(\frac{{MB}}{{DI}} = \frac{{MI + IA}}{{AI}} = 1 + \frac{{MI}}{{AI}} = 1 + \frac{{MB}}{{AM}} = \frac{{AM + MB}}{{AM}}\).

Suy ra \(DI = \frac{{BM.AM}}{{AM + BM}} = \frac{{15.10}}{{10 + 15}} = \frac{{150}}{{25}} = 6\).

Suy ra \(ED = 2DI = 2.6 = 12\) (do \(DI = IE = \frac{1}{2}DE\)).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(1,25\)

Gọi phương trình đường thẳng cần tìm \(AB\)\(y = ax + b\).

Ta có \(A\left( { - 4;0} \right) \in AB\) nên ta có: \( - 4.a + b = 0\) hay \(b = 4a.\)

Lại có \(B\left( {0;5} \right) \in AB\) nên ta có: \(0.a + b = 5\) hay \(b = 5\).

\(b = 4a\) nên suy ra \(4a = 5\)\(a = \frac{5}{4}\) hay \(a = 1,25\).

Vậy hệ số góc của đường thẳng cần tìm \(AB\)\(a = 1,25\).

Câu 2

Lời giải

Đáp án đúng là: A

Đường thẳng \(y = 1\) luôn cắt trục tung tại điểm có tung độ bằng \(1,\) hoành độ bằng \(0.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP