Câu hỏi:

17/03/2025 203

(1,5 điểm) Cho tam giác \[ABC{\rm{ }}\left( {AB < AC} \right)\] vuông tại \[A\] có đường cao \[AH.\]

a) Chứng minh rằng ΔABCΔHAC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chứng minh rằng  (ảnh 1)

Xét \(\Delta ABC\)\(\Delta HAC\), có: \(\widehat {BAC} = \widehat {AHC} = 90^\circ \) (gt) và \(\widehat {ACB} = \widehat {HCA}\) (gt)

Do đó, ΔABC∽ΔHAC. (g.g)

Câu hỏi cùng đoạn

Câu 2:

b) Lấy điểm \(I\) thuộc đoạn \(AH\) (\(I\)không trùng với \[A,H\]). Qua \[B\] kẻ đường thẳng vuông góc với \[CI\] tại \[K\]. Chứng minh rằng \[CH.CB = CI.CK.\]

Xem lời giải

verified Lời giải của GV VietJack

Xét \(\Delta CHI\)\(\Delta CKB\), ta có:

\(\widehat {CHI} = \widehat {CKB} = 90^\circ \) (gt)

\(\widehat {HCI} = \widehat {KCB}\)

Do đó, (g.g)

Suy ra \(\frac{{CH}}{{CK}} = \frac{{CI}}{{CB}}\).

Suy ra \(CH.CB = CI.CK\).

Câu 3:

c) Tia \[BK\] cắt tia \[HA\] tại điểm \[D.\] Chứng minh \[CH.CB + DK.DB = C{D^2}.\]

Xem lời giải

verified Lời giải của GV VietJack

Gọi \(M\) là giao điểm của \(BI\)\(DC\). Vì \(I\) là trực tâm của \(\Delta BDC\) nên \(BI \bot DC\).

Xét \(\Delta CMI\)\(\Delta CDK\), ta có: \(\widehat {CMI} = \widehat {CKD} = 90^\circ \) (gt) và \(\widehat {MCI} = \widehat {DCK}\) (gt)

Suy ra (g.g)

Suy ra \(\frac{{CM}}{{CK}} = \frac{{CI}}{{CD}}\) nên \(CD.CM = CI.CK\).

Mà từ phần b) ta có: \(CH.CB = CI.CK\) suy ra \(CH.CB = CI.CK = CD.CM.\)

Chứng minh được (g.g) suy ra \(DK.DB = DM.DC\).

Do đó, \(CH.CB + DK.DB = CM.CD + DM.DC = DC\left( {MD + MC} \right) = D{C^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(1,25\)

Gọi phương trình đường thẳng cần tìm \(AB\)\(y = ax + b\).

Ta có \(A\left( { - 4;0} \right) \in AB\) nên ta có: \( - 4.a + b = 0\) hay \(b = 4a.\)

Lại có \(B\left( {0;5} \right) \in AB\) nên ta có: \(0.a + b = 5\) hay \(b = 5\).

\(b = 4a\) nên suy ra \(4a = 5\)\(a = \frac{5}{4}\) hay \(a = 1,25\).

Vậy hệ số góc của đường thẳng cần tìm \(AB\)\(a = 1,25\).

Câu 2

Lời giải

Đáp án đúng là: A

Đường thẳng \(y = 1\) luôn cắt trục tung tại điểm có tung độ bằng \(1,\) hoành độ bằng \(0.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP