Câu hỏi:

05/04/2025 122

Cho đa thức \(h\left( x \right) = {x^3} + 3{x^2} + 5x + m\) (\(m\) là hệ số). Tìm \(m\) để đa thức chia hết cho \(x + 1.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: \(3\)

Thực hiện chia đa thức \(h\left( x \right) = {x^3} + 3{x^2} + 5x + m\) cho \(x + 1\), ta được:

\(\left( {{x^3} + 3{x^2} + 5x + m} \right):\left( {x + 1} \right) = {x^2} + 2x + 3\) và dư \(m - 3\).

Để đa thức \(h\left( x \right)\) chia hết cho \(x + 1\) thì \(m - 3 = 0\) hay \(m = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \( - 0,5\)

Ta có: \(3x\left( {2x + 1} \right) + \left( {2 - x} \right)\left( {6x + 3} \right) = 0\)

\(6{x^2} + 3x + 12x + 6 - 6{x^2} - 3x = 0\)

\(\left( {6{x^2} - 6{x^2}} \right) + \left( {3x - 3x} \right) + 12x + 6 = 0\)

\(12x + 6 = 0\)

\(12x = - 6\) nên \(x = - \frac{1}{2}\) hay \(x = - 0,5\).

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

\(I\) là giao điểm của ba đường phân giác trong \(\Delta ABC\) nên \(I\) là tâm đường tròn nội tiếp của \(\Delta ABC.\)

Do đó, \(I\) cách đều ba cạnh của \(\Delta ABC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP