Câu hỏi:
06/04/2025 10Câu 3-4. (2,0 điểm) Kết quả nhảy xa của một lớp (đơn vị mét) được cho trong bảng sau:
2,4 |
3,1 |
2,7 |
2,8 |
3,2 |
2,8 |
4,1 |
3,2 |
2,1 |
3,2 |
2,1 |
3,2 |
2,3 |
2,5 |
2,6 |
3,3 |
3,6 |
2,0 |
2,0 |
2,7 |
3,1 |
2,3 |
4,3 |
3,9 |
3,9 |
3,5 |
3,6 |
3,7 |
2,7 |
3,5 |
3,5 |
2,4 |
a) Để thu gọn bảng dữ liệu trên thì nên chọn bảng tần số ghép nhóm hay tấn số không ghép nhóm? Vì sao?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
a) Để thu gọn bảng dữ liệu trên thì nên chọn bảng tần số ghép nhóm vì trong bảng giá trị trên có nhiều giá trị khác nhau và mỗi giá trị lại xuất hiện ít lần.
Câu hỏi cùng đoạn
Câu 2:
b) Hãy lập bảng số liệu làm 5 nhóm trong đó nhóm cuối cùng cự li là từ 4,0 đến dưới 4,5 m. Lập bảng tần số và tần số tương đối ghép nhóm.
Lời giải của GV VietJack
b) Tần số tương ứng với các nhóm \(\left[ {2,0\,;\,\,2,5} \right)\); \(\left[ {2,5\,;\,\,3,0} \right)\); \(\left[ {3,0\,;\,\,3,5} \right)\); \[\left[ {3,5\,;\,\,4,0} \right)\]; \(\left[ {4,0\,;\,\,4,5} \right)\) lần lượt là \({m_1} = 9\,;\,{m_2} = 7\,;\,\,{m_3} = 7\,;\,\)\({m_4} = 7\,;\,\,{m_5} = 2.\)
Ta có bảng tần số ghép nhóm như sau:
Kết quả nhảy xa (m) |
\(\left[ {2,0\,;\,\,2,5} \right)\) |
\(\left[ {2,5\,;\,\,3,0} \right)\) |
\(\left[ {3,0\,;\,\,3,5} \right)\) |
\[\left[ {3,5\,;\,\,4,0} \right)\] |
\(\left[ {4,0\,;\,\,4,5} \right)\) |
Số học sinh |
9 |
7 |
7 |
7 |
2 |
Tổng số học sinh trong lớp là \(n = 9 + 7 + 7 + 7 + 2 = 32\).
a) Tần số tương đối của các nhóm \(\left[ {2,0\,;\,\,2,5} \right)\); \(\left[ {2,5\,;\,\,3,0} \right)\); \(\left[ {3,0\,;\,\,3,5} \right)\); \[\left[ {3,5\,;\,\,4,0} \right)\]; \(\left[ {4,0\,;\,\,4,5} \right)\) lần lượt lần lượt là:
\[{f_1} = \frac{9}{{32}} \cdot 100\% \approx 28,1\% \]; \[{f_2} = \frac{7}{{32}} \cdot 100\% \approx 21,9\% \];
\[{f_3} = \frac{7}{{32}} \cdot 100\% \approx 21,9\% \];\[{f_4} = \frac{7}{{32}} \cdot 100\% \approx 21,9\% \]; \[{f_5} = \frac{2}{{32}} \cdot 100\% \approx 6,2\% .\]
Ta có bảng tần số tương đối ghép nhóm như sau:
Kết quả nhảy xa (m) |
\(\left[ {2,0\,;\,\,2,5} \right)\) |
\(\left[ {2,5\,;\,\,3,0} \right)\) |
\(\left[ {3,0\,;\,\,3,5} \right)\) |
\[\left[ {3,5\,;\,\,4,0} \right)\] |
\(\left[ {4,0\,;\,\,4,5} \right)\) |
Số học sinh |
\(28,1\% \) |
\(21,9\% \) |
\(21,9\% \) |
\(21,9\% \) |
\(6,2\% \) |
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
1. Một cổng chào được thiết kế theo hình parabol là một phần của đồ thị hàm số \(y = - \frac{{{x^2}}}{2}.\) Khoảng cách giữa hai chân cổng là \(AB = 8\,\,{\rm{m}}{\rm{.}}\)
a) Tính hoành độ của hai điểm \(A,\,\,B\).
b) Tính chiều cao của cổng.
Câu 5:
Cho đường tròn \(\left( {O;R} \right)\). Lấy các điểm \[A,\,\,B,\,\,C,\,\,D,\,\,E,\,\,F\] trên đường tròn \(\left( {O;R} \right)\) sao cho số đo các cung bằng nhau. Đa giác \(ABCDEF\) có là đa giác đều không?
Câu 6:
2. Giải bài toán sau bằng cách lập phương trình:
Một khu vườn hình chữ nhật có chu vi \(280{\rm{\;m}}\). Người ta làm một lối đi xung quanh vườn rộng \(2{\rm{\;m}}\), diện tích còn lại để trồng trọt là \(4256{\rm{\;}}{{\rm{m}}^2}\). Tính chiều dài, chiều rộng của khu vườn.
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 03
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận