Câu hỏi:
06/04/2025 107
Câu 1-2. (2,5 điểm)
1. Một cổng chào được thiết kế theo hình parabol là một phần của đồ thị hàm số \(y = - \frac{{{x^2}}}{2}.\) Khoảng cách giữa hai chân cổng là \(AB = 8\,\,{\rm{m}}{\rm{.}}\)
a) Tính hoành độ của hai điểm \(A,\,\,B\).
b) Tính chiều cao của cổng.
Câu 1-2. (2,5 điểm)
1. Một cổng chào được thiết kế theo hình parabol là một phần của đồ thị hàm số \(y = - \frac{{{x^2}}}{2}.\) Khoảng cách giữa hai chân cổng là \(AB = 8\,\,{\rm{m}}{\rm{.}}\)
a) Tính hoành độ của hai điểm \(A,\,\,B\).
b) Tính chiều cao của cổng.
Quảng cáo
Trả lời:
Xét đồ thị hàm số \(y = - \frac{{{x^2}}}{2}\).
a) Ta có \(\frac{{AB}}{2} = 4\).
Vậy hoành độ của \(A\) và \(B\) thứ tự là \( - 4\) và \(4\).
b) Thay \(x = 4\) vào công thức \(y = - \frac{{{x^2}}}{2}\), ta có: \(y = - {\frac{4}{2}^2}\) nên \(y = - 8\).
Vậy chiều cao của cổng là \(\left| {\, - 8\,} \right| = 8\,\,\left( {\rm{m}} \right)\).
Câu hỏi cùng đoạn
Câu 2:
2. Giải bài toán sau bằng cách lập phương trình:
Một khu vườn hình chữ nhật có chu vi \(280{\rm{\;m}}\). Người ta làm một lối đi xung quanh vườn rộng \(2{\rm{\;m}}\), diện tích còn lại để trồng trọt là \(4256{\rm{\;}}{{\rm{m}}^2}\). Tính chiều dài, chiều rộng của khu vườn.
2. Giải bài toán sau bằng cách lập phương trình:
Một khu vườn hình chữ nhật có chu vi \(280{\rm{\;m}}\). Người ta làm một lối đi xung quanh vườn rộng \(2{\rm{\;m}}\), diện tích còn lại để trồng trọt là \(4256{\rm{\;}}{{\rm{m}}^2}\). Tính chiều dài, chiều rộng của khu vườn.
Lời giải của GV VietJack
Nửa chu vi của vườn là \(\frac{{280}}{2} = 140\,\,\left( {\rm{m}} \right)\).
Gọi \(x\,\,\left( {\rm{m}} \right)\) là chiều dài của hình chữ nhật \(\left( {70 < {\rm{x}} < 140} \right).\)
Khi đó, chiều rộng của hình chữ nhật là: \(140 - x\,\,\left( {\rm{m}} \right)\).Mỗi bên để \(2{\rm{\;m}}\) làm lối đi nên chiều dài của đất để lại trồng trọt chỉ còn \(x - 4\,\,\left( {\rm{m}} \right)\) và chiêu rộng là: \(140 - x - 4 = 136 - x\,\,\left( {\rm{m}} \right)\).
Theo bài ra, ta có phương trình: \(\;\left( {x - 4} \right)\left( {136 - x} \right) = 4256\)
\(136x - {x^2} - 544 + 4x = 4256\)
\({x^2} - 140x + 4800 = 0\)
Ta có \(a = 1\,;\,\,b' = - 70\,;\,\,c = 4800\,;\,\,\Delta ' = 4900 - 4800 = 100 > 0\).
Do đó \(x = 60{\rm{\;}}\) (loại) hoặc \(x = 80\) (TMĐK).
Vậy chiều dài và chiều rộng của hình chữ nhật lần lượt là 80 m và 60 m.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thể tích nước trong cốc là:
\({V_1} = \pi {r^2}\;h = \pi \cdot {12^2} \cdot 10 = 1440\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right).\)
Vậy thể tích nước trong cốc là \(1440\pi \,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}.\)
Lời giải
a) Để thu gọn bảng dữ liệu trên thì nên chọn bảng tần số ghép nhóm vì trong bảng giá trị trên có nhiều giá trị khác nhau và mỗi giá trị lại xuất hiện ít lần.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.