Câu hỏi:
06/04/2025 32a) Chứng minh rằng \(M,\,\,D,\,\,O,\,\,H\) cùng nằm trên một đường tròn.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
a) Vì \(MC,\,\,MD\) là tiếp tuyến của \(\left( {O\,;\,\,R} \right)\) \(\left( {C,\,\,\,D} \right.\) là hai tiếp điểm) nên \(MC \bot OC,\,\)\(\,MD \bot OD.\)
Suy ra \(\widehat {OCM} = \widehat {ODM} = 90^\circ \) nên \(C,\,\,D\) thuộc đường tròn đường kính \(OM\).
Vì \(H\) là trung điểm của \(AB\) và \(AB\) là dây của \(\left( {O\,;\,\,R} \right)\) nên \(OH \bot AB\).Suy ra \(\widehat {OHM} = 90^\circ \) nên \(H\) thuộc đường tròn đường kính \(OM\).
Vậy \(M,\,\,D,\,\,O,\,\,H\) cùng nằm trên đường tròn đường kính \(OM\).
Câu hỏi cùng đoạn
Câu 2:
b) Đoạn \(OM\) cắt đường tròn tại \(I.\) Chứng minh rằng \(I\) là tâm đường tròn nội tiếp tam giác \(MCD.\)
Lời giải của GV VietJack
Vì \(MC,\,\,MD\) là tiếp tuyến của \(\left( {O\,;\,\,R} \right)\)\(\left( {C,\,\,\,D} \right.\) là hai tiếp điểm) nên \(MO\) là tia phân giác của \(\widehat {CMD}\) và \(OM\) là tia phân giác của \(\widehat {COD}.\)
Mặt khác, \(\widehat {MCI} = \widehat {CDI}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn
và \(\widehat {CDI} = \widehat {DCI}\) (tam giác \(CDI\) cân tại \[I\,)\].
Suy ra \[\widehat {MCI} = \widehat {DCI}\] nên \[CI\] là tia phân giác của \(\widehat {MCD}\).
Ta có \(I\) là giao điểm hai đường phân giác trong của tam giác \(MCD\) nên \(I\) là tâm đường tròn nội tiếp tam giác \(MCD.\)
Câu 3:
c) Đường thẳng qua \(O,\) vuông góc với \(OM\) cắt các tia \(MC,\,\,MD\) theo thứ tự tại \(P,\,\,Q.\) Tìm vị trí của điểm \(M\) trên \(d\) sao cho diện tích tam giác \(MPQ\) nhỏ nhất.
Lời giải của GV VietJack
c) Ta có \({S_{MPQ}} = 2{S_{MPO}} = MP \cdot OC = \left( {MC + CP} \right) \cdot R\).
Mà \(MC + CP \ge 2\sqrt {MC.CP} = 2\sqrt {O{C^2}} = 2R\) nên \({S_{MPQ}} \ge 2{R^2}\).
Dấu xảy ra khi \(MC = CP = R\) hay \(OM = R\sqrt 2 \).
Vậy để diện tích tam giác \(MPQ\) nhỏ nhất thì \(M\) là giao điểm của \(\left( {O\,;\,\,R\sqrt 2 } \right)\) và đường thẳng \(d.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
1. Lực \(F\,\,\left( {\rm{N}} \right)\) của gió khi thổi vuông góc vào cánh buồm tỷ lệ thuận với bình phương tốc độ \(v\,\,\left( {{\rm{m/s}}} \right)\) của gió theo công thức: \(F = a{v^2}\), trong đó \(a\) là một hằng số.
a) Tính hằng số \(a\).
b) Khi tốc độ của gió là \(v = 10\,\,{\rm{m/s}}\) thì lực \(F\) của gió tác động lên cánh buồm là bao nhiêu?
Câu 5:
Cho tam giác \(ABC\) đều như hình vẽ. Điểm \(B\) biến thành điểm nào?
• Phép phép quay thuận chiều \(60^\circ \) tâm \(A\).
• Phép phép quay ngược chiều \(300^\circ \) tâm \(A\).
Câu 6:
2. Giải bài toán sau bằng cách lập phương trình:
Hai vòi nước cùng chảy vào một bể thì \(6\) giờ đầy bể. Nếu mở vòi chảy một mình cho đầy bể thì vòi thứ hai cấn nhiều hơn vòi thứ nhất \(5\) giờ. Tính thời gian để mỗi vòi chảy một mình đầy bể.
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 03
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận