Câu hỏi:
06/04/2025 101a) Chứng minh rằng \(M,\,\,D,\,\,O,\,\,H\) cùng nằm trên một đường tròn.
Quảng cáo
Trả lời:
a) Vì \(MC,\,\,MD\) là tiếp tuyến của \(\left( {O\,;\,\,R} \right)\) \(\left( {C,\,\,\,D} \right.\) là hai tiếp điểm) nên \(MC \bot OC,\,\)\(\,MD \bot OD.\)
Suy ra \(\widehat {OCM} = \widehat {ODM} = 90^\circ \) nên \(C,\,\,D\) thuộc đường tròn đường kính \(OM\).
Vì \(H\) là trung điểm của \(AB\) và \(AB\) là dây của \(\left( {O\,;\,\,R} \right)\) nên \(OH \bot AB\).Suy ra \(\widehat {OHM} = 90^\circ \) nên \(H\) thuộc đường tròn đường kính \(OM\).
Vậy \(M,\,\,D,\,\,O,\,\,H\) cùng nằm trên đường tròn đường kính \(OM\).
Câu hỏi cùng đoạn
Câu 2:
b) Đoạn \(OM\) cắt đường tròn tại \(I.\) Chứng minh rằng \(I\) là tâm đường tròn nội tiếp tam giác \(MCD.\)
Lời giải của GV VietJack
Vì \(MC,\,\,MD\) là tiếp tuyến của \(\left( {O\,;\,\,R} \right)\)\(\left( {C,\,\,\,D} \right.\) là hai tiếp điểm) nên \(MO\) là tia phân giác của \(\widehat {CMD}\) và \(OM\) là tia phân giác của \(\widehat {COD}.\)
Mặt khác, \(\widehat {MCI} = \widehat {CDI}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn
và \(\widehat {CDI} = \widehat {DCI}\) (tam giác \(CDI\) cân tại \[I\,)\].
Suy ra \[\widehat {MCI} = \widehat {DCI}\] nên \[CI\] là tia phân giác của \(\widehat {MCD}\).
Ta có \(I\) là giao điểm hai đường phân giác trong của tam giác \(MCD\) nên \(I\) là tâm đường tròn nội tiếp tam giác \(MCD.\)
Câu 3:
c) Đường thẳng qua \(O,\) vuông góc với \(OM\) cắt các tia \(MC,\,\,MD\) theo thứ tự tại \(P,\,\,Q.\) Tìm vị trí của điểm \(M\) trên \(d\) sao cho diện tích tam giác \(MPQ\) nhỏ nhất.
Lời giải của GV VietJack
c) Ta có \({S_{MPQ}} = 2{S_{MPO}} = MP \cdot OC = \left( {MC + CP} \right) \cdot R\).
Mà \(MC + CP \ge 2\sqrt {MC.CP} = 2\sqrt {O{C^2}} = 2R\) nên \({S_{MPQ}} \ge 2{R^2}\).
Dấu xảy ra khi \(MC = CP = R\) hay \(OM = R\sqrt 2 \).
Vậy để diện tích tam giác \(MPQ\) nhỏ nhất thì \(M\) là giao điểm của \(\left( {O\,;\,\,R\sqrt 2 } \right)\) và đường thẳng \(d.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
1. Lực \(F\,\,\left( {\rm{N}} \right)\) của gió khi thổi vuông góc vào cánh buồm tỷ lệ thuận với bình phương tốc độ \(v\,\,\left( {{\rm{m/s}}} \right)\) của gió theo công thức: \(F = a{v^2}\), trong đó \(a\) là một hằng số.
a) Tính hằng số \(a\).
b) Khi tốc độ của gió là \(v = 10\,\,{\rm{m/s}}\) thì lực \(F\) của gió tác động lên cánh buồm là bao nhiêu?
Câu 5:
Cho tam giác \(ABC\) đều như hình vẽ. Điểm \(B\) biến thành điểm nào?
• Phép phép quay thuận chiều \(60^\circ \) tâm \(A\).
• Phép phép quay ngược chiều \(300^\circ \) tâm \(A\).
Câu 6:
2. Giải bài toán sau bằng cách lập phương trình:
Hai vòi nước cùng chảy vào một bể thì \(6\) giờ đầy bể. Nếu mở vòi chảy một mình cho đầy bể thì vòi thứ hai cấn nhiều hơn vòi thứ nhất \(5\) giờ. Tính thời gian để mỗi vòi chảy một mình đầy bể.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
123 bài tập Nón trụ cầu và hình khối có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận