Câu hỏi:

11/04/2025 132 Lưu

Tính giá trị của biểu thức \(B = {x^2}\left( {x + y} \right) - {y^2}.\left( {x + y} \right) + {x^2} - {y^2} + 2\left( {x + y} \right) + 3\) biết \(x + y + 1 = 0.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án: \(1\)

Ta có: \(B = {x^2}\left( {x + y} \right) - {y^2}.\left( {x + y} \right) + {x^2} - {y^2} + 2\left( {x + y} \right) + 3\)

\(B = {x^2}\left( {x + y} \right) - {y^2}.\left( {x + y} \right) + {x^2} - {y^2} + 2\left( {x + y} \right) + 3\)

\(B = \left( {x + y} \right)\left( {{x^2} - {y^2}} \right) + {x^2} - {y^2} + 2\left( {x + y} \right) + 3\)

\(B = \left( {x + y + 1} \right)\left( {{x^2} - {y^2}} \right) + 2x + 2y + 3\)

\(B = \left( {x + y + 1} \right)\left( {{x^2} - {y^2}} \right) + 2\left( {x + y + 1} \right) + 1\)

\(x + y + 1 = 0\), do đó \(B = 0.\left( {{x^2} - {y^2}} \right) + 2.0 + 1 = 1.\)

Vậy \(B = 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có hai số tự nhiên liên tiếp cách nhau \(2\) đơn vị.

Do đó, biểu thức biểu thị tổng của hai số tự nhiên lẻ liên tiếp \(x + \left( {x + 2} \right)\) với \(x = 2k + 1,k \in \mathbb{N}.\)

Lời giải

Ta có đa thức \(A\left( x \right)\) có bậc là 3.

Có: \(H\left( x \right) = A\left( x \right) + B\left( x \right) = 2{x^3} - 5{x^2} - 7x - 2023 + \left( { - 2} \right){x^3} + 9{x^2} + 7x + 2024\)

                                         \( = \left( {2{x^3} - 2{x^3}} \right) + \left( { - 5{x^2} + 9{x^2}} \right) + \left( {7x - 7x} \right) - 2023 + 2024\)

                                         \( = {x^2} + 1\).

Vậy \(H\left( x \right) = {x^2} + 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP