Câu hỏi:

19/08/2025 111 Lưu

Câu 3-4. Lực \(F\,\,\left( {\rm{N}} \right)\) của gió khi thổi vuông góc vào cánh buồm tỷ lệ thuận với bình phương tốc độ \(v\,\,\left( {{\rm{m/s}}} \right)\) của gió theo công thức: \(F = a{v^2}\), trong đó \(a\) là một hằng số.
a) Tính hằng số \(a\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Thay \(v = 2,\,\,F = 120\) vào công thức \(F = a{v^2}\), ta được \(120 = a \cdot {2^2}\)

Khi đó \(4a = 120\) nên \(a = 30.\)

Vậy hằng số \(a = 30\)

Câu hỏi cùng đoạn

Câu 2:

b) Khi tốc độ của gió là \(v = 10\,\,{\rm{m/s}}\) thì lực \(F\) của gió tác động lên cánh buồm là bao nhiêu?

Xem lời giải

verified Lời giải của GV VietJack

b) Vì \(a = 30\) nên \(F = 30{v^2}\).

Với \(v = 10\) ta có \(F = 30 \cdot {10^2} = 3000\,\,\left( {\rm{N}} \right)\).

Vậy khi tốc độ của gió là \(v = 10\,\,{\rm{m/s}}\) thì lực \(F\) của gió tác động lên cánh buồm là \(3\,\,000\,\,{\rm{N}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi thời gian để vòi thứ nhất chảy đầy bể là \(x\) (giờ) \[\left( {x > 0} \right)\].

Khi đó, thời gian để vòi thứ hai chảy đầy bể \(x + 5\) (giờ).

Khi đó, mỗi giờ vòi thứ nhất chảy được \(\frac{1}{x}\) bể; vòi thứ hai chảy dược: \(\frac{1}{{x + 5}}\) bể và cả hai vòi chảy được \(\frac{1}{6}\) bể.

Theo đề bài, ta có phương trình: \(\frac{1}{x} + \frac{1}{{x + 5}} = \frac{1}{6}\)

\(\frac{{6\left( {x + 5} \right)}}{{6x\left( {x + 5} \right)}} + \frac{{6x}}{{6x\left( {x + 5} \right)}} = \frac{{x\left( {x + 5} \right)}}{{6x\left( {x + 5} \right)}}\)

\(6\left( {x + 5} \right) + 6x = x\left( {x + 5} \right)\)

\({x^2} - 7x - 30 = 0\)
\(x = 10\) (TMĐK) hoặc \(x = - 3\) (loại).

Vậy: Vòi thứ nhất chảy đầy bể trong 10 giờ.

Vòi thứ hai chảy đầy bế trong 15 giờ.

Lời giải

2. a) Vì \(CK \bot AK\) nên \(\widehat {AKC} = 90^\circ .\) Vì \(CH \bot AB\) tại \[H\] nên \(\widehat {AHC} = 90^\circ .\)

Gọi \(I\)là trung điểm \(AC\).

\(\Delta AKC\)\(KI\) là trung tuyến ứng với cạnh huyền \(AC\) nên \(KI = OA = OC = \frac{1}{2}AC.\)

\(\Delta AHC\)\(HI\) là trung tuyến ứng với cạnh huyền\(AC\) nên \(HI = IA = IC = \frac{1}{2}AC.\)

Do đó \(IA = IK = IC = IH.\)

Vậy bốn điểm \(A,\,\,H,\,\,C,\,\,K\) cùng nằm trên cùng một đường tròn tâm \(I\) hay tứ giác \[AHCK\] nội tiếp.
a) Chứng minh tứ giác \[AHCK\] là tứ giác nội tiếp. (ảnh 1)

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP