Câu hỏi:

12/04/2025 139

Câu 9-11. Cho đường tròn \[\left( O \right)\] đường kính \[AB.\] Gọi \[H\] là điểm nằm giữa \[O\]\[B.\] Kẻ dây \[CD\] vuông góc với \[AB\] tại \[H.\] Trên cung nhỏ \[AC\] lấy điểm \[E\] bất kỳ \[\left( E \right.\] khác \[A\]\[\left. C \right).\] Kẻ \[CK\] vuông góc với \[AE\] tại \[K.\] Đường thẳng \[DE\] cắt \[CK\] tại \[F.\]
a) Chứng minh tứ giác \[AHCK\] là tứ giác nội tiếp.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

2. a) Vì \(CK \bot AK\) nên \(\widehat {AKC} = 90^\circ .\) Vì \(CH \bot AB\) tại \[H\] nên \(\widehat {AHC} = 90^\circ .\)

Gọi \(I\)là trung điểm \(AC\).

\(\Delta AKC\)\(KI\) là trung tuyến ứng với cạnh huyền \(AC\) nên \(KI = OA = OC = \frac{1}{2}AC.\)

\(\Delta AHC\)\(HI\) là trung tuyến ứng với cạnh huyền\(AC\) nên \(HI = IA = IC = \frac{1}{2}AC.\)

Do đó \(IA = IK = IC = IH.\)

Vậy bốn điểm \(A,\,\,H,\,\,C,\,\,K\) cùng nằm trên cùng một đường tròn tâm \(I\) hay tứ giác \[AHCK\] nội tiếp.
a) Chứng minh tứ giác \[AHCK\] là tứ giác nội tiếp. (ảnh 1)

 

Câu hỏi cùng đoạn

Câu 2:

b) Chứng minh \[KH\] song song với \[ED\] và tam giác \[ACF\] là tam giác cân.

Xem lời giải

verified Lời giải của GV VietJack

b) Vì \[AHCK\] là tứ giác nội tiếp nên  \(\widehat {CHK} = \widehat {CAK} = \widehat {CAE}\) (góc nội tiếp cùng chắn cung \[KC).\]

Lại có \[ADCE\]nội tiếp nên \(\widehat {CAE} = \widehat {CDE}\) (góc nội tiếp cùng chắn cung \[EC).\]

Từ đó suy ra \(\widehat {CHK} = \widehat {CDE}\) nên \(HK\,{\rm{//}}\,DE\) (đpcm).

Do \(HK\,{\rm{//}}\,DE\), mà \[H\] là trung điểm \[CD\] (quan hệ vuông góc của đường kính \[AB\] với dây \[CD\] tại \[H).\]

Suy ra \[HK\] là đường trung bình của tam giác \[CDF\] nên \[K\] là trung điểm \[FC\].

Tam giác \[AFC\]\[AK\] là đường cao đồng thời cũng là trung tuyến.

Do đó tam giác \[CAF\]là tam giác cân tại \[K\] (đpcm).

Câu 3:

c) Tìm vị trí của điểm \[E\] để diện tích tam giác \[ADF\] lớn nhất.

Xem lời giải

verified Lời giải của GV VietJack

c) Tam giác \[FAC\] cân tại \[A\] nên \[AF = AC.\]

Dễ thấy tam giác \[ACD\] cân tại \[A\] nên \[AC = AD\].

Từ đó suy ra \[AF = AD\] hay tam giác \[AFD\] cân tại \[A\], hạ \[DI \bot AF\] .

Ta có \({S_{AFD}} = \frac{1}{2}DI \cdot AF = \frac{1}{2}DI \cdot AC\).

Do \[AC\] không đổi nên \({S_{AFD}}\) lớn nhất khi và chỉ khi \[DI\] lớn nhất.

Trong tam giác vuông \[AID\] ta có:

\(ID \le AD = AC\) hay \({S_{AFD}} = \frac{1}{2}DI \cdot AF = \frac{1}{2}DI \cdot AC \le \frac{{A{C^2}}}{2}\).

Dấu  xảy ra khi và chỉ khi \(I \equiv A\), khi đó \[\widehat {DAF} = 90^\circ \] nên tam giác \[ADF\] vuông cân tại \[A\], suy ra \(\widehat {EBA} = \widehat {EDA} = 45^\circ \) hay \[E\] là điểm chính giữa cung \[AB.\]

Vậy để diện tích tam giác \[ADF\] lớn nhất thì \[E\] là điểm chính giữa cung \[AB.\]

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Thể tích nước trong cốc là:

\({V_1} = \pi {r^2}\;h = \pi \cdot {12^2} \cdot 10 = 1440\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right).\)

Vậy thể tích nước trong cốc là \(1440\pi \,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}.\)

Lời giải

a) Ta có bảng sau:

Lần 2

Lần 1

1

2

3

4

1

(1, 1)

(1, 2)

(1, 3)

(1, 4)

2

(2, 1)

(2, 2)

(2, 3)

(2, 4)

3

(3, 1)

(3, 2)

(3, 3)

(3, 4)

4

(4, 1)

(4, 2)

(4, 3)

(4, 4)

Không gian mẫu là:

\[\Omega = \left\{ {\left( {1\,,\,\,1} \right)\,;\,\,\left( {1\,,\,\,2} \right)\,;\,\,\left( {1\,,\,\,3} \right)\,;\,\,\left( {1\,,\,\,4} \right)\,;\,\,\left( {2\,,\,\,1} \right)\,;\,\,\left( {2\,,\,\,2} \right);{\rm{ }}\left( {2\,,\,\,3} \right);{\rm{ }}\left( {2\,,\,\,4} \right);{\rm{ }}\left( {3\,,\,\,1} \right)\,;\,\,\left( {3\,,\,\,2} \right)} \right.\,;\,\,\left( {3\,,\,\,3} \right)\,;\,\,\left( {3\,,\,\,4} \right)\,;{\rm{ }}\] \[\left. {\left( {4\,,\,\,1} \right);\,\,\left( {4\,,\,\,2} \right);\,\,\left( {4\,,\,\,3} \right);\,\,\left( {4\,,\,\,4} \right)} \right\}.\]

Do đó, số phần tử của \(\Omega \) là 16.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Tính hằng số \(a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay