Câu hỏi:
12/04/2025 91Quảng cáo
Trả lời:
a) Gọi \(O'\) là trung điểm của cạnh \[CH.\]
Ta có \(HD \bot CD\) nên \(\widehat {HDC} = 90^\circ \).
Xét \(\Delta HDC\)vuông tại \[D\] có \(DO'\) là trung tuyến nên \(DO' = HO' = CO' = \frac{1}{2}HC\).
Chứng ming tương tự, ta có
\(CO' = HO' = EO' = \frac{1}{2}HC\).
Do đó \(DO' = HO' = CO' = EO' = \frac{1}{2}HC\).Do đó, bốn điểm \(D,\,\,H,\,\,E,\,\,C\) cùng thuộc một đường tròn.
Vậy tứ giác \(DHEC\) nội tiếp đường tròn.
Câu hỏi cùng đoạn
Câu 2:
Lời giải của GV VietJack
b) Trong tam giác \(ABC\) có \(BE,\,\,AD\) là hai đường cao cắt nhau tại \(H\).
Vì \(H\) là trực tâm tam giác \(ABC\) nên \(CH \bot AB\).
Trong \(\left( O \right)\) có \(\widehat {ABM},\,\,\widehat {ACM}\) là hai góc nội tiếp cùng chắn nửa đường tròn đường kính \(AM\)
Suy ra \(\widehat {ABM} = \widehat {ACM} = 90^\circ \) nên \(MB \bot AB\,;\,\,MC \bot AC.\)
Mà \(CH \bot AB\,;\,\,BH \bot AC\) nên \(MB\,{\rm{//}}\,CH,\,\,MC\,{\rm{//}}\,BH\) nên \(BHCM\) là hình bình hành.
Xét đường tròn \(\left( O \right)\) có \(OI \bot BC\) tại \(I\) nên \(I\) là trung điểm của \(BC\) (đường kính vuông góc với dây).
Câu 3:
Lời giải của GV VietJack
c) Xét \(\Delta DHB\) và \(\Delta DCA\) có
\(\widehat {BDH} = \widehat {ADC} = 90^\circ \) (vì \(AD \bot BC\))
\(\widehat {HBD} = \widehat {DAC}\) (cùng phụ \(\widehat {ACB}\))
Do đó .
Suy ra \(\frac{{DH}}{{DC}} = \frac{{DB}}{{DA}}\) hay \(DH \cdot DA = DB \cdot DC.\)
Ta có \({\left( {a - b} \right)^2} \ge 0\) hay \({a^2} - 2ab + {b^2} \ge 0\) nên \({a^2} + 2ab + {b^2} \ge 4ab\), suy ra \(ab \le \frac{{{{\left( {a + b} \right)}^2}}}{4}\).
Áp dụng bất đẳng thức \(ab \le \frac{{{{\left( {a + b} \right)}^2}}}{4}\), ta có: \(DB \cdot DC \le \frac{{{{\left( {DB + DC} \right)}^2}}}{4} = \frac{{B{C^2}}}{4}\).
Suy ra \(DH \cdot DA \le \frac{{B{C^2}}}{4}\) không đổi vì \(BC\) cố định.
Dấu xảy ra khi \(DB = DC\), khi đó \(A\) là điểm chính giữa cung lớn .
Vậy \(A\) là điểm chính giữa cung lớn thì giá trị lớn nhất của \(DH \cdot DA\) bằng \(\frac{{B{C^2}}}{4}\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Kí hiểu \[T\] là màu trắng, là màu đỏ và \[V\] là màu vàng.
Không gian mẫu .
Số kết quả có thể xảy ra là \(n\left( \Omega \right) = 4\).
Lời giải
b) Bảng tần số tương đối của mỗi nhóm
Nhóm |
\[\left[ {36\,;\,38} \right)\] |
\[\left[ {38\,;40} \right)\] |
\[\left[ {40\,;42} \right)\] |
\[\left[ {42\,;\,44} \right)\] |
\[\left[ {44\,;46} \right)\] |
Tần số tương đối \[\left( n \right)\] |
\[20\] |
\[15\] |
\[25\] |
\[30\] |
\[10\] |
Biểu đồ cột của mẫu số liệu ghép nhóm:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
123 bài tập Nón trụ cầu và hình khối có lời giải
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận