Câu hỏi:

21/04/2025 219 Lưu

Trong không gian véc tơ R5 xét tích vô hướng thông thường. Tìm một cơ sở của phần bù trực giao \[{{\rm{W}}^ \bot }\]của không gian:\[{\rm{W = span}}\left\{ {{{\rm{u}}_{\rm{1}}} = (1,2,3, - 1,2),{{\rm{u}}_{\rm{1}}} = (2,4,7,2, - 1)} \right\}\]

A. \[\left\{ {{{\rm{v}}_1} = (2, - 1,0,0,0),{{\rm{v}}_2} = ( - 17,0,5,0,1),{{\rm{v}}_3} = (13,0, - 4,1,0)} \right\}\]

B. \[\left\{ {{{\rm{v}}_1} = (2, - 1,0,0,0),{{\rm{v}}_2} = ( - 17,0,5,0,1)} \right\}\]

C. \[\left\{ {{{\rm{v}}_1} = (2, - 1,0,0,0),{v_2} = (7,0,5,0,1),{{\rm{v}}_2} = (13,0, - 4,1,0)} \right\}\]

D. \[\left\{ {{{\rm{v}}_1} = (2, - 1,0,0,0),{v_2} = ( - 17,0,5,0,1),{{\rm{v}}_2} = (15,1, - 5,0, - 1)} \right\}\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[{{\rm{v}}_1} = (3,1,0, - 4),{{\rm{v}}_2} = (1, - 3,5,4)\]

B. \[{{\rm{v}}_1} = (4,1,0,6),{{\rm{v}}_2} = (2, - 1,3,0),{{\rm{v}}_3} = (1, - 1,3,2)\]

C. \[{{\rm{v}}_1} = (1,2,0),{{\rm{v}}_2} = (4,4,0,1)\]

D. \[{{\rm{v}}_1} = (2,4,2,0),{{\rm{v}}_2} = (5,6,1,2)\]

Lời giải

Chọn đáp án C

Câu 2

A. Hệ vô nghiệm

B. \(\left\{ {\begin{array}{*{20}{c}}{m \ne 0,}\\{m = 0}\end{array}} \right. \Rightarrow {x_1} = \frac{{ - 5{x_3} - 13{x_4} - 3}}{2};{x_1} = \frac{{ - 7{x_3} - 19{x_4} - 7}}{2}\)

C. \(\left\{ {\begin{array}{*{20}{c}}{m = 9,}\\{m \ne 9}\end{array}} \right. \Rightarrow {x_1} = \frac{{2{x_1} + 11{x_2} - 3}}{2};{x_1} = \frac{{ - 5{x_1} + 21{x_2} - 7}}{2}\)

Lời giải

Chọn đáp án A

Câu 3

A. \[{{\rm{(}}{{\rm{W}}_{\rm{1}}}{\rm{ + }}{{\rm{W}}_{\rm{2}}}{\rm{)}}^ \bot }{\rm{ = }}{{\rm{W}}_{\rm{1}}}^ \bot \cap {{\rm{W}}_{\rm{2}}}^ \bot \]

B. \[{{\rm{(}}{{\rm{W}}_{\rm{1}}} \cap {\rm{ }}{{\rm{W}}_{\rm{2}}}{\rm{)}}^ \bot }{\rm{ = }}{{\rm{W}}_{\rm{1}}}^ \bot + {{\rm{W}}_{\rm{2}}}^ \bot \]

C. \[{{\rm{(}}{{\rm{W}}_{\rm{1}}} \cap {\rm{ }}{{\rm{W}}_{\rm{2}}}{\rm{)}}^ \bot }{\rm{ = }}{{\rm{W}}_{\rm{1}}}^ \bot \cup {{\rm{W}}_{\rm{2}}}^ \bot \]

D. \[{{\rm{(}}{{\rm{W}}_{\rm{1}}} \subset {\rm{ }}{{\rm{W}}_{\rm{2}}}{\rm{)}}^ \bot }{\rm{ = }}{{\rm{W}}_{\rm{1}}}^ \bot \supset {{\rm{W}}_{\rm{2}}}^ \bot \]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP