Câu hỏi:

21/04/2025 277

Câu 9-11. (2,5 điểm) Cho tam giác \[ABC\] vuông tại \[A\], đường cao \[AH\,\,\left( {H \in BC} \right)\]. Biết \[AB = 18{\rm{ cm,}}\] \[AC = 24{\rm{ cm}}{\rm{.}}\]

a) Chứng minh: \[A{B^2} = BH \cdot BC\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

v (ảnh 1)

a) Xét \[\Delta ABH\]\[\Delta CBA\] có:

\(\widehat {ABH} = \widehat {CBA}\); \(\widehat {AHB} = \widehat {CAB}\;\left( { = 90^\circ } \right)\)

Do đó ΔABH  ΔCBA  (g.g) .

Suy ra \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\) hay \(A{B^2} = BH \cdot BC\) (đpcm)

Câu hỏi cùng đoạn

Câu 2:

b) Kẻ đường phân giác \[CD\] của tam giác \[ABC\]\[\left( {D \in AB} \right)\]. Tính độ dài \[DA\].

Xem lời giải

verified Lời giải của GV VietJack

b) Áp dụng định lý Pythagore vào tam giác \[ABC\] vuông tại \[A\] có:

\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{18}^2} + {{24}^2}} = 30\,\;{\rm{(cm)}}\).

Áp dụng tính chất đường phân giác với \[CD\] là đường phân giác của \[\widehat {ACB}\] nên

\(\frac{{DA}}{{BD}} = \frac{{AC}}{{BC}} = \frac{{24}}{{30}} = \frac{4}{5}\) hay \(BD = \frac{5}{4}DA\).

Lại có \[BD + DA = BA = 18\]

\(\frac{5}{4}DA + DA = 18\)

\(\frac{9}{4}DA = 18\)

\(DA = 18 \cdot \frac{4}{9} = 8\;\,{\rm{(cm)}}\).

Câu 3:

c) Từ \[B\] kẻ đường thẳng vuông góc với đường thẳng \[CD\] tại \[E\] và cắt đường thẳng \[AH\] tại \[F.\] Trên đoạn thẳng \[CD\] lấy điểm \[G\] sao cho \[BA = BG\].  Chứng minh: \[BG \bot FG\].

Xem lời giải

verified Lời giải của GV VietJack

c) Ta có \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\;\left( {{\rm{cmt}}} \right)\) nên \(\frac{{BG}}{{CB}} = \frac{{BH}}{{BG}}\) suy ra \[B{G^2} = BH \cdot BC{\rm{ }}\,\,\left( 1 \right)\]

Xét \[\Delta EBC\]\[\Delta HBF\] có:

\[\widehat {BEC} = \widehat {BHF}\;\left( { = 90^\circ } \right)\]; \[\widehat {EBC} = \widehat {HBF}\].

Do đó ΔEBC  ΔHBF  (g.g)

Suy ra \(\frac{{BH}}{{BE}} = \frac{{BF}}{{BC}}\) hay \(BH \cdot BC = BE \cdot BF\) (2)

Từ (1) và (2) suy ra \[B{G^2} = BE \cdot BF\] hay \(\frac{{BG}}{{BE}} = \frac{{BF}}{{BG}}.\)

Xét \[\Delta BGE\]\[\Delta BFG\]

\[\frac{{BG}}{{BE}} = \frac{{BF}}{{BG}}\;\,\left( {{\rm{cmt}}} \right)\]; \[\widehat {EBG} = \widehat {GBF}\].

Do đó ΔBGE  ΔBFG  (c.g.c)

Suy ra \(\widehat {BEG} = \widehat {BGF}\) (hai góc tương ứng)

\(\widehat {BEG} = \widehat {BEC} = 90^\circ \) nên \(\widehat {BGF} = 90^\circ \).

Do đó \[BG \bot FG\] (đpcm).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét \(\Delta ABC\) vuông tại \[A\], theo định lý Pythagore, ta có:

\(B{C^2} = A{B^2} + A{C^2} = {5^2} + {12^2} = 25 + 144 = 169.\)

Suy ra \[BC = 13\,\,{\rm{m}}{\rm{.}}\]

Vậy con chim bay được một đoạn bằng \[13\,\,{\rm{m}}\] thì bắt được con cá.

Lời giải

Tổng khối lượng các loại hạt điều thu hoạch được là:

\(1\,\,450 + 2\,\,230 + 1\,\,860 = 5\,\,540\) (kg).

Vậy tổng khối lượng các loại hạt điều thu hoạch được là \(5\,\,540\) kg.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay