Câu hỏi:
21/04/2025 40Câu 9-11. (2,5 điểm) Cho tam giác \[ABC\] vuông tại \[A\], đường cao \[AH\,\,\left( {H \in BC} \right)\]. Biết \[AB = 18{\rm{ cm,}}\] \[AC = 24{\rm{ cm}}{\rm{.}}\]
a) Chứng minh: \[A{B^2} = BH \cdot BC\].
Quảng cáo
Trả lời:
a) Xét \[\Delta ABH\] và \[\Delta CBA\] có:
\(\widehat {ABH} = \widehat {CBA}\); \(\widehat {AHB} = \widehat {CAB}\;\left( { = 90^\circ } \right)\)
Do đó .
Suy ra \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\) hay \(A{B^2} = BH \cdot BC\) (đpcm)
Câu hỏi cùng đoạn
Câu 2:
b) Kẻ đường phân giác \[CD\] của tam giác \[ABC\]\[\left( {D \in AB} \right)\]. Tính độ dài \[DA\].
Lời giải của GV VietJack
b) Áp dụng định lý Pythagore vào tam giác \[ABC\] vuông tại \[A\] có:
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{18}^2} + {{24}^2}} = 30\,\;{\rm{(cm)}}\).
Áp dụng tính chất đường phân giác với \[CD\] là đường phân giác của \[\widehat {ACB}\] nên
\(\frac{{DA}}{{BD}} = \frac{{AC}}{{BC}} = \frac{{24}}{{30}} = \frac{4}{5}\) hay \(BD = \frac{5}{4}DA\).
Lại có \[BD + DA = BA = 18\]
\(\frac{5}{4}DA + DA = 18\)
\(\frac{9}{4}DA = 18\)
\(DA = 18 \cdot \frac{4}{9} = 8\;\,{\rm{(cm)}}\).
Câu 3:
c) Từ \[B\] kẻ đường thẳng vuông góc với đường thẳng \[CD\] tại \[E\] và cắt đường thẳng \[AH\] tại \[F.\] Trên đoạn thẳng \[CD\] lấy điểm \[G\] sao cho \[BA = BG\]. Chứng minh: \[BG \bot FG\].
Lời giải của GV VietJack
c) Ta có \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\;\left( {{\rm{cmt}}} \right)\) nên \(\frac{{BG}}{{CB}} = \frac{{BH}}{{BG}}\) suy ra \[B{G^2} = BH \cdot BC{\rm{ }}\,\,\left( 1 \right)\]
• Xét \[\Delta EBC\] và \[\Delta HBF\] có:
\[\widehat {BEC} = \widehat {BHF}\;\left( { = 90^\circ } \right)\]; \[\widehat {EBC} = \widehat {HBF}\].
Do đó
Suy ra \(\frac{{BH}}{{BE}} = \frac{{BF}}{{BC}}\) hay \(BH \cdot BC = BE \cdot BF\) (2)
Từ (1) và (2) suy ra \[B{G^2} = BE \cdot BF\] hay \(\frac{{BG}}{{BE}} = \frac{{BF}}{{BG}}.\)
• Xét \[\Delta BGE\] và \[\Delta BFG\] có
\[\frac{{BG}}{{BE}} = \frac{{BF}}{{BG}}\;\,\left( {{\rm{cmt}}} \right)\]; \[\widehat {EBG} = \widehat {GBF}\].
Do đó
Suy ra \(\widehat {BEG} = \widehat {BGF}\) (hai góc tương ứng)
Mà \(\widehat {BEG} = \widehat {BEC} = 90^\circ \) nên \(\widehat {BGF} = 90^\circ \).
Do đó \[BG \bot FG\] (đpcm).
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
a) Viết công thức \[y\] theo \[x\]. Cho biết \[y\] có phải là hàm số của \[x\] không? Vì sao?
b) Một người đặt vé đi máy bay từ Thành phố Hồ Chí Minh ra Phú Yên và mang theo 9 kg hành lý. Hỏi người đó phải trả tổng cộng bao nhiêu tiền?Câu 5:
(0,5 điểm) Cho 3 hộp đựng thẻ. Hộp 1 chứa các tấm thẻ đánh số \(\left\{ {1\,;\,\,2\,;\,\,3} \right\},\) hộp 2 chứa các thẻ đánh số \(\left\{ {2\,;\,\,4\,;\,\,6\,;\,\,8} \right\},\) hộp 3 chứa các thẻ đánh số \(\left\{ {1\,;\,\,3\,;\,\,5\,;\,\,7\,;\,\,9\,;\,\,11} \right\}.\) Từ mỗi hộp rút ngẫu nhiên một tấm thẻ rồi cộng ba số trên ba tấm thẻ với nhau. Tính xác suất để kết quả là một số lẻ.
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Nhận biết hai hình đồng dạng, hai hình đồng dạng phối cảnh (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận