Câu 12-13. (1,5 điểm)
Một cây cao \[12\,\,{\rm{m}}\] mọc cạnh bờ sông. Trên đỉnh cây có một con chim đang đậu và chuẩn bị sà xuống bắt con cá trên mặt nước (như Hình 1 và được mô phỏng như Hình 2). Hỏi con chim sẽ bay một đoạn ngắn nhất bằng bao nhiêu mét thì bắt được con cá? (Biết con cá cách gốc cây \[5\,\,{\rm{m}}\] và nước cao mấp mé bờ sông).
Câu 12-13. (1,5 điểm)

Quảng cáo
Trả lời:
Xét \(\Delta ABC\) vuông tại \[A\], theo định lý Pythagore, ta có:
\(B{C^2} = A{B^2} + A{C^2} = {5^2} + {12^2} = 25 + 144 = 169.\)
Suy ra \[BC = 13\,\,{\rm{m}}{\rm{.}}\]
Vậy con chim bay được một đoạn bằng \[13\,\,{\rm{m}}\] thì bắt được con cá.
Câu hỏi cùng đoạn
Câu 2:
Một chiếc lều có hình dạng là một hình chóp tứ giác đều. Biết chiếc lều có mặt bên là tam giác đều có cạnh bằng \(2\,\,{\rm{m}}\). Tính chiều cao của chiếc lều.
Một chiếc lều có hình dạng là một hình chóp tứ giác đều. Biết chiếc lều có mặt bên là tam giác đều có cạnh bằng \(2\,\,{\rm{m}}\). Tính chiều cao của chiếc lều.

Xét \(\Delta SAE\) vuông tại \(E\) có: \(S{E^2} + E{A^2} = S{A^2}\)
Suy ra \(S{E^2} = S{A^2} - E{A^2}\) \( = {2^2} - {1^2} = 3\).
Ta có \(SE\) là trung đoạn nên \(E\) là trung điểm của \(AB\).
Xét \(\Delta ABD\) có \(E,\,\,H\) lần lượt là trung điểm của \(AB,\,\,BD\).
Do đó \(EH\) là đường trung bình của \(\Delta ABD\) nên \(EH = \frac{1}{2}AD = 1\,\,\left( {\rm{m}} \right)\).
Xét \(\Delta SEH\) vuông tại \(H\) có: \(S{E^2} = S{H^2} + E{H^2}\) .
Suy ra \(S{H^2} = S{E^2} - E{H^2}\) \( = 3 - {1^2} = 2\).
Do đó \(SH = \sqrt 2 \,\,{\rm{m}}\).
Vậy chiều cao của chiếc lều là \(\sqrt 2 \,\,{\rm{m}}\,{\rm{.}}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Công thức \[y\] theo \[x\] là \[y = 1200\,\,000 + \left( {x--7} \right) \cdot 100\,\,000\] (đồng)
Khi đó, \[y\] là hàm số của \[x\] vì mỗi giá trị của \[x\] chỉ xác định đúng một giá trị của \[y\].
b) Tổng số tiền người đó phải trả là:
\[1200\,\,000 + \left( {9--7} \right) \cdot 100\,\,000 = 1400\,\,000\] (đồng).
Vậy người đó phải trả tổng cộng \[1400\,\,000\] đồng.
Lời giải

a) Xét \[\Delta ABH\] và \[\Delta CBA\] có:
\(\widehat {ABH} = \widehat {CBA}\); \(\widehat {AHB} = \widehat {CAB}\;\left( { = 90^\circ } \right)\)
Do đó .
Suy ra \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\) hay \(A{B^2} = BH \cdot BC\) (đpcm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.