Câu hỏi:

21/04/2025 164

Câu 6 - 8. (1,5 điểm) Bạn An gieo xúc xắc 80 lần. Bạn An đếm được có 13 lần xuất hiện mặt 2 chấm, 12 lần xuất hiện mặt 4 chấm và 14 lần xuất hiện mặt 6 chấm.

a) Tính xác suất thực nghiệm của biến cố “Mặt xuất hiện của xúc xắc là số 4”.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Xác suất thực nghiệm của biến cố “Mặt xuất hiện của xúc xắc là số 4” là \(\frac{{12}}{{80}} = \frac{3}{{20}}.\)

Câu hỏi cùng đoạn

Câu 2:

b) Tính xác suất thực nghiệm của biến cố “Mặt xuất hiện của xúc xắc là số lẻ”.

Xem lời giải

verified Lời giải của GV VietJack

b) Số lần xúc xắc xuất hiện số lẻ là: \(80 - 13 - 12 - 14 = 41\) (lần).

Xác suất thực nghiệm của biến cố “Mặt xuất hiện của xúc xắc là số lẻ” là \(\frac{{41}}{{80}}.\)

Câu 3:

c) Nêu mối liên hệ giữa xác suất thực nghiệm của biến cố “Mặt xuất hiện của xúc xắc là số lẻ” với xác suất của biến cố đó khi số lần gieo ngày càng lớn.

Xem lời giải

verified Lời giải của GV VietJack

c) Trong các số chấm từ 1 chấm đến 6 chấm, thì có 3 mặt có số chấm là số lẻ.

Do đó xác suất của biến cố “Mặt xuất hiện của xúc xắc là số lẻ” là \(\frac{3}{6} = \frac{1}{2}.\)

Vậy khi số lần gieo ngày càng lớn thì xác suất thực nghiệm của biến cố “Mặt xuất hiện của xúc xắc là số lẻ” càng gần với \(\frac{1}{2}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét \(\Delta ABC\) vuông tại \[A\], theo định lý Pythagore, ta có:

\(A{B^2} + A{C^2} = B{C^2}\)

Suy ra \[A{C^2} = B{C^2} - A{B^{2\;}} = {100^2} - {60^2} = 6400\].

Khi đó \[AC = \sqrt {6\,400} = 80\,\,{\rm{(cm)}}\]

\[80\,\,{\rm{cm}} < 85\,\,{\rm{cm}}\] nên nhà bạn Nam đã thực hiện đúng quy định của khu phố.

Lời giải

a (ảnh 1)

a) Xét \[\Delta ABK\]\[\Delta CBF\] có:

\[\widehat {ABK} = \widehat {CBF}\;\left( {\widehat B\;\,{\rm{chung}}} \right)\]; \(\widehat {AKB} = \widehat {CFB}\;\left( { = 90^\circ } \right)\)

Do đó ΔABK  ΔCBF  (g.g)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay