Câu hỏi:

21/04/2025 425 Lưu

Câu 9-11. (2,5 điểm) Cho tam giác \[ABC\] có ba góc nhọn \[\left( {AB < AC} \right).\] Kẻ đường cao \[BE,{\rm{ }}AK\]\[CF\] cắt nhau tại \[H.\]

a) Chứng minh: ΔABK  ΔCBF .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a (ảnh 1)

a) Xét \[\Delta ABK\]\[\Delta CBF\] có:

\[\widehat {ABK} = \widehat {CBF}\;\left( {\widehat B\;\,{\rm{chung}}} \right)\]; \(\widehat {AKB} = \widehat {CFB}\;\left( { = 90^\circ } \right)\)

Do đó ΔABK  ΔCBF  (g.g)

Câu hỏi cùng đoạn

Câu 2:

b) Chứng minh: \(AE \cdot AC = AF \cdot AB\).

Xem lời giải

verified Giải bởi Vietjack

b) Xét \[\Delta AEB\]\[\Delta ACF\] có:

\(\widehat {EAB} = \widehat {FAC}\;\,\left( {\widehat A\;\,{\rm{chung}}} \right)\); \(\widehat {AEB} = \widehat {AFC}\;\left( { = 90^\circ } \right)\)

Do đó ΔAEB  ΔACF  (g.g)

Suy ra \(\frac{{AE}}{{AF}} = \frac{{AB}}{{AC}}\) hay \(AE \cdot AC = AF \cdot AB\) (đpcm)

Câu 3:

c) Gọi \[N\] là giao điểm của \[AK\]\[EF,{\rm{ }}D\] là giao điểm của đường thẳng \[BC\] và đường thẳng \[EF\]\[O,{\rm{ }}I\] lần lượt là trung điểm của \[BC\] \[AH.\] Chứng minh \[ON\] vuông góc \[DI.\]

Xem lời giải

verified Giải bởi Vietjack

c) Xét \[\Delta BFC\] vuông tại \[F\]\[O\] là trung điểm của \[BC\] nên \(FO = \frac{{BC}}{2}\).

Xét \[\Delta BEC\] vuông tại \[E\]\[O\] là trung điểm của \[BC\] nên \(EO = \frac{{BC}}{2}\).

Do đó \[FO = EO = \frac{{BC}}{2}\].              (1)

Xét \[\Delta AEH\] vuông tại \[E\]\[I\] là trung điểm của \[AH\] nên \(EI = \frac{{AH}}{2}\).

Xét \[\Delta AFH\] vuông tại \[F\]\[I\] là trung điểm của \[AH\] nên \(FI = \frac{{AH}}{2}\).

Do đó \[FI = EI = \frac{{AH}}{2}\]. (2)

Từ (1) và (2) ta suy ra được \[OI\] là đường trung trực của cạnh \[EF\].

Khi đó \[OI \bot EF\] hay \[OI \bot DN\].

Do đó \[DN\] là đường cao của \[\Delta DOI\].

Xét \[\Delta DOI\]\[DN\]\[IK\] là đường cao và \[N\] là giao của \[DN\] \[IK\].

Do đó \[N\] là trực tâm của tam giác \[DOI\].

Vậy \[OI \bot DI\] (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét \(\Delta ABC\) vuông tại \[A\], theo định lý Pythagore, ta có:

\(A{B^2} + A{C^2} = B{C^2}\)

Suy ra \[A{C^2} = B{C^2} - A{B^{2\;}} = {100^2} - {60^2} = 6400\].

Khi đó \[AC = \sqrt {6\,400} = 80\,\,{\rm{(cm)}}\]

\[80\,\,{\rm{cm}} < 85\,\,{\rm{cm}}\] nên nhà bạn Nam đã thực hiện đúng quy định của khu phố.

Lời giải

a) Ta có \({x^3} - 1 = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right).\)

\[{x^2} + x + 1 = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} > 0.\]

Điều kiện: \[\left\{ \begin{array}{l}{x^3} - 1 \ne 0\\x - 1 \ne 0\end{array} \right.\] nên \[\left\{ \begin{array}{l}\left( {x - 1} \right)\left( {{x^2} + x + 1} \right) \ne 0\\x - 1 \ne 0\end{array} \right.\], do đó \[x \ne 1\].

Vậy điều kiện xác định của biểu thức \(P\) là \[x \ne 1\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP