Câu hỏi:

21/04/2025 117

(0,5 điểm) Trong hộp kín có 6 viên bi đỏ, 3 viên bi xanh, các viên bi có cùng kích thước, khối lượng và hình dạng như nhau, chỉ khác màu sắc. Lấy ngẫu nhiên 1 viên bi từ trong hộp. Sau đó, thêm mỗi hộp một số viên bi màu đỏ, màu xanh sao cho xác suất chọn được viên bi mỗi màu không đổi. Hỏi cần thêm ít nhất bao nhiêu viên bi mỗi màu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Gọi \(x,\,\,y\) (viên) lần lượt là số viên bi đỏ và xanh cần thêm \(\left( {x,\,\,y \in \mathbb{N}*} \right)\).

Tổng số viên bi trong hộp ban đầu là: \(6 + 3 = 9\) (viên bi).

Lấy ngẫu nhiên 1 viên bi trong hộp nên có 9 kết quả có thể xảy ra.

Số kết quả thuận lợi để lấy được viên bi đỏ ban đầu là 6.

Khi đó, xác suất lấy được viên bi màu đỏ là \(\frac{6}{9} = \frac{2}{3}.\)

Số kết quả thuận lợi để lấy được viên bi xanh ban đầu là 3.

Khi đó, xác suất lấy được viên bi màu xanh là \(\frac{3}{9} = \frac{1}{3}.\)

Sau khi số bi tăng thêm, trong hộp có tất cả \(\left( {9 + x + y} \right)\) viên bi, trong đó có \(\left( {6 + x} \right)\) viên bi đỏ và \(\left( {3 + y} \right)\) viên bi xanh.

Do đó xác suất chọn được một viên bi mỗi màu không đổi nên ta có

\(\left\{ \begin{array}{l}\frac{{6 + x}}{{9 + x + y}} = \frac{2}{3}\\\frac{{3 + y}}{{9 + x + y}} = \frac{1}{3}\end{array} \right.\), suy ra \(6 + x = 2\left( {3 + y} \right)\) nên \(x = 2y.\)

Do \(x,\,\,y \in \mathbb{N}*\) và số bi cần thêm vào là ít nhất nên \(y = 1\) và \(x = 2.\)

Vậy cần phải thêm ít nhất 2 viên bi màu đỏ, 1 viên bi xanh.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét \(\Delta ABC\) vuông tại \[A\], theo định lý Pythagore, ta có:

\(A{B^2} + A{C^2} = B{C^2}\)

Suy ra \[A{C^2} = B{C^2} - A{B^{2\;}} = {100^2} - {60^2} = 6400\].

Khi đó \[AC = \sqrt {6\,400} = 80\,\,{\rm{(cm)}}\]

\[80\,\,{\rm{cm}} < 85\,\,{\rm{cm}}\] nên nhà bạn Nam đã thực hiện đúng quy định của khu phố.

Lời giải

a (ảnh 1)

a) Xét \[\Delta ABK\]\[\Delta CBF\] có:

\[\widehat {ABK} = \widehat {CBF}\;\left( {\widehat B\;\,{\rm{chung}}} \right)\]; \(\widehat {AKB} = \widehat {CFB}\;\left( { = 90^\circ } \right)\)

Do đó ΔABK  ΔCBF  (g.g)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay