Câu hỏi:
21/04/2025 117(0,5 điểm) Trong hộp kín có 6 viên bi đỏ, 3 viên bi xanh, các viên bi có cùng kích thước, khối lượng và hình dạng như nhau, chỉ khác màu sắc. Lấy ngẫu nhiên 1 viên bi từ trong hộp. Sau đó, thêm mỗi hộp một số viên bi màu đỏ, màu xanh sao cho xác suất chọn được viên bi mỗi màu không đổi. Hỏi cần thêm ít nhất bao nhiêu viên bi mỗi màu?
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi \(x,\,\,y\) (viên) lần lượt là số viên bi đỏ và xanh cần thêm \(\left( {x,\,\,y \in \mathbb{N}*} \right)\).
Tổng số viên bi trong hộp ban đầu là: \(6 + 3 = 9\) (viên bi).
Lấy ngẫu nhiên 1 viên bi trong hộp nên có 9 kết quả có thể xảy ra.
Số kết quả thuận lợi để lấy được viên bi đỏ ban đầu là 6.
Khi đó, xác suất lấy được viên bi màu đỏ là \(\frac{6}{9} = \frac{2}{3}.\)
Số kết quả thuận lợi để lấy được viên bi xanh ban đầu là 3.
Khi đó, xác suất lấy được viên bi màu xanh là \(\frac{3}{9} = \frac{1}{3}.\)
Sau khi số bi tăng thêm, trong hộp có tất cả \(\left( {9 + x + y} \right)\) viên bi, trong đó có \(\left( {6 + x} \right)\) viên bi đỏ và \(\left( {3 + y} \right)\) viên bi xanh.
Do đó xác suất chọn được một viên bi mỗi màu không đổi nên ta có
\(\left\{ \begin{array}{l}\frac{{6 + x}}{{9 + x + y}} = \frac{2}{3}\\\frac{{3 + y}}{{9 + x + y}} = \frac{1}{3}\end{array} \right.\), suy ra \(6 + x = 2\left( {3 + y} \right)\) nên \(x = 2y.\)
Do \(x,\,\,y \in \mathbb{N}*\) và số bi cần thêm vào là ít nhất nên \(y = 1\) và \(x = 2.\)
Vậy cần phải thêm ít nhất 2 viên bi màu đỏ, 1 viên bi xanh.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét \(\Delta ABC\) vuông tại \[A\], theo định lý Pythagore, ta có:
\(A{B^2} + A{C^2} = B{C^2}\)
Suy ra \[A{C^2} = B{C^2} - A{B^{2\;}} = {100^2} - {60^2} = 6400\].
Khi đó \[AC = \sqrt {6\,400} = 80\,\,{\rm{(cm)}}\]
Vì \[80\,\,{\rm{cm}} < 85\,\,{\rm{cm}}\] nên nhà bạn Nam đã thực hiện đúng quy định của khu phố.
Lời giải
a) Xét \[\Delta ABK\] và \[\Delta CBF\] có:
\[\widehat {ABK} = \widehat {CBF}\;\left( {\widehat B\;\,{\rm{chung}}} \right)\]; \(\widehat {AKB} = \widehat {CFB}\;\left( { = 90^\circ } \right)\)
Do đóLời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận