Câu hỏi:

24/04/2025 1,220 Lưu

Dựa vào thông tin dưới đây để trả lời các câu từ 76 đến 77

Trong một ngôi làng có 500 người thì 240 người là nam. Thống kê cho thấy rằng, khả năng mắc bệnh hô hấp ở người nam trong làng là 0,6% và ở người nữ trong làng là 0,35%. Giả sử gặp một người trong làng.

Tỉ lệ mắc bệnh hô hấp chung của cả làng là:    

A. \(0,42\% \).          
B. \(0,45\% \).          
C. \(0,47\% \). 
D. \(0,51\% \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi A là biến cố: “gặp người mắc bệnh hô hấp trong làng” và B là biến cố: “gặp được nam trong làng”. Khi đó, \(\overline B \) là biến cố: “gặp được nữ trong làng”.

Theo bài ra ta có, \(P\left( B \right) = \frac{{240}}{{500}} = \frac{{12}}{{25}} \Rightarrow P\left( {\bar B} \right) = \frac{{13}}{{25}}\); \(P\left( {A\mid B} \right) = 0,006;\,\,P\left( {A\mid \bar B} \right) = 0,0035\).

Áp dụng công thức xác suất toàn phần, ta có:

\(P\left( A \right) = P\left( B \right) \cdot P\left( {A|B} \right) + P\left( {\bar B} \right) \cdot P\left( {A|\bar B} \right) = \frac{{12}}{{25}} \cdot 0,006 + \frac{{13}}{{25}} \cdot 0,0035 = 0,0047 = 0,47\% \). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử gặp một người trong làng không mắc bệnh, xác suất để người đó là nữ chính là xác suất có điều kiện \(P\left( {\bar B|\bar A} \right)\).

Ta có \(P\left( {\bar A} \right) = 1 - P\left( A \right) = 1 - 0,0047 = 0,9953\); \(P\left( {\bar A|\bar B} \right) = 1 - P\left( {A|\bar B} \right) = 1 - 0,0035 = 0,9965\).

Theo công thức Bayes: \(P\left( {\bar B\mid \bar A} \right) = \frac{{P\left( {\bar B} \right) \cdot P\left( {\bar A|\bar B} \right)}}{{P\left( {\bar A} \right)}} = \frac{{13}}{{25}} \cdot \frac{{0,9965}}{{0,9953}} \approx 0,5206 = 52,06\% \). Chọn A.

Câu 2

A. \(v\left( {{t_1}} \right) = \frac{1}{{90\,000\,000}}t_1^3 + \frac{1}{{500}}{t_1} + 1\,\,\,\left( {{\rm{m/s}}} \right)\).                           
B. \(v\left( {{t_1}} \right) = \frac{1}{{90\,000\,000}}t_1^3 + \frac{n}{{500}}{t_1} + 1\,\,\,\left( {{\rm{m/s}}} \right)\), \(n > 0\).    
C. \(v\left( {{t_1}} \right) = \frac{1}{{9\,000}}t_1^2 + \frac{n}{{100}}{t_1}\,\,\left( {{\rm{m/s}}} \right)\), \(n > 0\).    
D. \(v\left( {{t_1}} \right) = \frac{1}{{9\,000}}t_1^2 + \frac{n}{{100}}{t_1} + 1\,\,\,\left( {{\rm{m/s}}} \right)\), \(n > 0\).

Lời giải

Ta có vận tốc của tên lửa tầm trung là:

\(v\left( {{t_1}} \right) = \int {a\left( {{t_1}} \right)d{t_1}} = \int {\left( {\frac{1}{{4500}}{t_1} + \frac{n}{{100}}} \right)} \,{\rm{d}}{t_1} = \frac{1}{{9000}}t_1^2 + \frac{n}{{100}}{t_1} + C\).

Vì khi \({t_1} = 0\) thì \(v\left( {{t_1}} \right) = 0\) nên suy ra \(C = 0\).

Do đó \(v\left( {{t_1}} \right) = \frac{1}{{9000}}t_1^2 + \frac{n}{{100}}{t_1}\,\,\left( {{\rm{m/s}}} \right)\), \(n > 0\). Chọn C.

Câu 3

A. \(\alpha = \frac{\pi }{{22}}\).               
B. \(\alpha = - \frac{{2\pi }}{{45}}\).    
C. \(\alpha  =  - \frac{\pi }{{21}}\).                   
D. \(\alpha=- \frac{\pi }{{22}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. The Importance of Preserving Traditional Forms of Media in Society.    
B. A Comprehensive History of the Evolution of Media.    
C. One of the Most Significant Developments in the History of Media.    
D. The Negative Impact of Digital Media on Modern Communication.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. International gift-receiving traditions.    
B. The occasions of giving and receiving gifts in some Asian countries.    
C. International gift-giving customs.   
D. The manners of giving and receiving gifts around the world.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP