Câu hỏi:

28/04/2025 63 Lưu

Dựa vào thông tin dưới đây để trả lời các câu từ 75 đến 76

Cho tam giác ABC có \(\widehat B = 15^\circ ,\,\,\widehat C = 30^\circ \)\(AB = 2\).

 Diện tích tam giác ABC là:    

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(\widehat A = 180^\circ - \widehat B - \widehat C = 180^\circ - 15^\circ - 30^\circ = 135^\circ \).

Theo định lí sin trong tam giác ABC, ta có \(\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}}\).

Do đó, \(BC = \frac{{AB\sin A}}{{\sin C}} = \frac{{2 \cdot \sin 135^\circ }}{{\sin 30^\circ }} = 2\sqrt 2 \).

Diện tích tam giác ABC là: \(S = \frac{1}{2}BA \cdot BC \cdot \sin B = \frac{1}{2} \cdot 2 \cdot 2\sqrt 2 \cdot \sin 15^\circ = \sqrt 3 - 1\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đổi: \(36\,{\rm{km/h}} = 10\,{\rm{m/s}}\); \(54\,{\rm{km/h}} = 15\,{\rm{m/s}}\).

Sau \(3\) giây khi phát hiện đèn tín hiệu, xe máy đi được quãng đường là: \(10 \cdot 3 = 30\) (m).

Sau đó, xe máy bắt đầu giảm tốc và quãng đường xe máy đi được từ lúc bắt đầu giảm tốc lần thứ nhất đến khi dừng hẳn tại vị trí đèn tín hiệu là: \(80 - 30 = 50\) (m).

Khi xe bắt đầu giảm tốc lần thứ nhất ta có: \({v_1}\left( 0 \right) = a \cdot 0 + b\, = 10\,\,{\rm{m/s}} \Rightarrow b = 10\).

Ta có \[{s_1}\left( t \right) = \int {{v_1}\left( t \right)dt} = \int {\left( {at + b} \right)dt} \,\, = \int {\left( {at + 10} \right)dt} \,\, = \frac{{a{t^2}}}{2} + 10t + {C_1}\,\,\left( {\rm{m}} \right)\].

Theo đề \[{s_1}\left( 0 \right) = 0 \Rightarrow {C_1} = 0 \Rightarrow {s_1}\left( t \right)\, = \frac{{a{t^2}}}{2} + 10t\,\,\left( {\rm{m}} \right)\].

Khi xe dừng tại vị trí đèn tín hiệu thì thời gian đi được của xe kể từ khi giảm tốc lần thứ nhất là: \[{v_1}\left( t \right) = 0 \Rightarrow at + 10 = 0 \Rightarrow t = \frac{{ - 10}}{a}\,\,\left( {\rm{s}} \right)\].

Ta có: \[{s_1}\left( {\frac{{ - 10}}{a}} \right)\, = 50 \Rightarrow \frac{a}{2} \cdot {\left( {\frac{{ - 10}}{a}} \right)^2} + 10\left( {\frac{{ - 10}}{a}} \right) = 50 \Rightarrow a = - 1 < 0\] (thỏa mãn).

Do đó \[t = \frac{{ - 10}}{{ - 1}} = 10\,\,\left( {\rm{s}} \right)\]. Vậy xe máy dừng hẳn tại vị trí đèn tín hiệu sau \(10\) giây kể từ khi bắt đầu giảm tốc lần thứ nhất. Chọn A.

Câu 2

Lời giải

Ta có: \({2^x} = {\left( {\frac{1}{3}} \right)^x} - 1 \Leftrightarrow {2^x} + 1 - {\left( {\frac{1}{3}} \right)^x} = 0 \Leftrightarrow f\left( x \right) = 0\).

+ Hàm số \(f\left( x \right) = {2^x} + 1 - {\left( {\frac{1}{3}} \right)^x}\)\(f'\left( x \right) = {2^x}\ln 2 + {\left( {\frac{1}{3}} \right)^x}\ln 3 > 0,\,\forall x \in \mathbb{R}\) nên \(f\left( x \right)\) là hàm số đồng biến trên \(\mathbb{R}\).

+ Lại có \(f\left( { - 1} \right) \cdot f\left( 0 \right) < 0\) nên phương trình đã cho có 1 nghiệm thuộc \(\left( { - 1;0} \right)\).

Vậy phương trình có duy nhất 1 nghiệm. Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tốc độ tăng trưởng của khách du lịch ở Đồng bằng sông Cửu Long năm 2019 là bao nhiêu %?    

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP