Câu hỏi:

06/05/2025 62

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AD và BC. Tổng \(\overrightarrow {AB} + \overrightarrow {DC} \) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Tổng   −−→ A B + −−→ D C   bằng (ảnh 1)

Ta có :

\(\overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {AM} + \overrightarrow {MN} + \overrightarrow {NB} + \overrightarrow {DM} + \overrightarrow {MN} + \overrightarrow {NC} \)

\( = \left( {\overrightarrow {AM} + \overrightarrow {DM} } \right) + 2\overrightarrow {MN} + \left( {\overrightarrow {NB} + \overrightarrow {NC} } \right) = 2\overrightarrow {MN} \).

(vì M, N lần lượt là trung điểm của AD, BC nên \(\overrightarrow {AM} + \overrightarrow {DM} = \overrightarrow 0 ;\overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 \)).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hình hộp ABCD.A'B'C'D'. Mệnh đề nào sau đây đúng?

Lời giải

Đáp án đúng là: A

Ta có \(\overrightarrow {AB} + \overrightarrow {A'D'} = \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) (quy tắc hình bình hành).

Câu 2

Cho tứ diện ABCD có trọng tâm G, gọi M là trung điểm AD. Khi đó:

Lời giải

Đáp án đúng là: B

Cho tứ diện ABCD có trọng tâm G, gọi M là trung điểm AD. Khi đó: (ảnh 1)

Gọi \(N\) là trung điểm BC thì G chính là trung điểm của MN. Do đó ta có:

\(\overrightarrow {MG} = \frac{1}{2}\overrightarrow {MN} = \frac{1}{4}\left( {\overrightarrow {MB} + \overrightarrow {MC} } \right)\).

Câu 3

Cho hình lăng trụ tam giác ABC.A'B'C'. Đặt \(\overrightarrow {AA'} = \overrightarrow a ;\overrightarrow {AB} = \overrightarrow b ;\overrightarrow {AC} = \overrightarrow c ;\overrightarrow {BC} = \overrightarrow d \). Trong các biểu thức vectơ sau đây, biểu thức nào đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hình lập phương ABCD.A'B'C'D'. Gọi O là tâm của hình lập phương. Khẳng định nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hình lăng trụ ABC.A'B'C'. Đặt \(\overrightarrow {AA'} = \overrightarrow a ;\overrightarrow {AB} = \overrightarrow b ;\overrightarrow {AC} = \overrightarrow c \). Gọi G' là trọng tâm của tam giác A'B'C'. Vectơ \(\overrightarrow {AG'} \) bằng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tứ diện S.ABC có M, N, P là trung điểm của SA, SB, SC. Tìm khẳng định đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay