Câu hỏi:
06/05/2025 87Cho hình lăng trụ ABC.A'B'C'. Đặt \(\overrightarrow {AA'} = \overrightarrow a ;\overrightarrow {AB} = \overrightarrow b ;\overrightarrow {AC} = \overrightarrow c \). Gọi G' là trọng tâm của tam giác A'B'C'. Vectơ \(\overrightarrow {AG'} \) bằng?
Quảng cáo
Trả lời:
Đáp án đúng là: B
Gọi I là trung điểm B'C'. Vì G' là trọng tâm tam giác A'B'C' \( \Rightarrow \overrightarrow {A'G'} = \frac{2}{3}\overrightarrow {A'I} \).
Mặt khác \(\overrightarrow {AG'} = \overrightarrow {AA'} + \overrightarrow {A'G'} = \overrightarrow {AA'} + \frac{2}{3}\overrightarrow {A'I} = \overrightarrow {AA'} + \frac{1}{3}\left( {\overrightarrow {A'B'} + \overrightarrow {A'C'} } \right)\)
\( = \overrightarrow {AA'} + \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{3}\left( {3\overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{3}\left( {3\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có \(\overrightarrow {AB} + \overrightarrow {A'D'} = \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) (quy tắc hình bình hành).
Lời giải
Đáp án đúng là: B
Gọi \(N\) là trung điểm BC thì G chính là trung điểm của MN. Do đó ta có:
\(\overrightarrow {MG} = \frac{1}{2}\overrightarrow {MN} = \frac{1}{4}\left( {\overrightarrow {MB} + \overrightarrow {MC} } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.