Câu hỏi:

06/05/2025 538

Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy theo km, một ra đa phát hiện một máy bay di chuyển với vận tốc và hướng không đổi từ điểm M(1000; 600; 14) đến điểm N(a; b; c) trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì sau 10 phút tiếp theo máy bay đến vị trí điểm Q(1400; 800; 18). Tính a + b + c.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: D

Theo đề ta có \(\overrightarrow {MN} = \frac{3}{4}\overrightarrow {MQ} \)\( \Leftrightarrow \left\{ \begin{array}{l}a - 1000 = \frac{3}{4}\left( {1400 - 1000} \right)\\b - 600 = \frac{3}{4}\left( {800 - 600} \right)\\c - 14 = \frac{3}{4}\left( {18 - 14} \right)\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a = 1300\\b = 750\\c = 17\end{array} \right.\).

Do đó a + b + c = 2067.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C

Chọn hệ trục tọa độ Oxyz như hình vẽ

Tính giá trị của a + b + c (làm tròn kết quả đến hàng phần trăm). (ảnh 2)

Do giả thiết khối chóp tứ giác đều S.ABCD nên ABCD là hình vuông.

Có A'(0; 0; 0), A(0; 0; 1), \(B\left( {0;\frac{1}{2};1} \right)\), \(B'\left( {0;\frac{1}{2};0} \right),D'\left( {\frac{1}{2};0;0} \right)\), \(D\left( {\frac{1}{2};0;1} \right)\).

I là trung điểm của BD nên \(I\left( {\frac{1}{4};\frac{1}{4};1} \right)\).

Ta có \(BD = \frac{{\sqrt 2 }}{2};IB = ID = \frac{{\sqrt 2 }}{4};SI = \sqrt {S{B^2} - I{B^2}} = \sqrt {0,{6^2} - {{\left( {\frac{{\sqrt 2 }}{4}} \right)}^2}} = \frac{{\sqrt {94} }}{{20}}\).

Vậy \(S\left( {\frac{1}{4};\frac{1}{4};\frac{{\sqrt {94} }}{{20}} + 1} \right)\). Suy ra a + b + c ≈ 1,98.

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A

Theo đề ta có A(1,5; 1; −0,5); C(1; 3; 2); \(\overrightarrow {AC} = \left( { - 0,5;2;2,5} \right)\).

Gọi \(B\left( {x;y;0} \right)\)\( \Rightarrow \overrightarrow {AB} = \left( {x - 1,5;y - 1;0,5} \right)\).

\(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương nên \(\frac{{x - 1,5}}{{ - 0,5}} = \frac{{y - 1}}{2} = \frac{{0,5}}{{2,5}} = \frac{1}{5}\)\( \Rightarrow \left\{ \begin{array}{l}x = \frac{7}{5}\\y = \frac{7}{5}\end{array} \right.\).

 Vậy \(B\left( {\frac{7}{5};\frac{7}{5};0} \right)\).