Câu hỏi:
06/05/2025 5,475Để chuẩn bị cho một buổi triển lãm quốc tế, các trang sức có giá trị lớn được đặt bảo mật trong các khối chóp tứ giác đều S.ABCD và đặt lên phía trên một trụ hình hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông (như hình vẽ bên).
Chọn hệ trục tọa độ Oxyz (đơn vị trên mỗi trục là mét) sao cho A'(0; 0; 0), A(0; 0; 1), \(B\left( {0;\frac{1}{2};1} \right)\). Biết rằng, ban tổ chức sự kiện dự định dùng các tấm kính cường lực hình tam giác cân có cạnh bên là 60 cm để ráp lại thành khối chóp nói trên. Khi đó, tọa độ điểm S(a; b; c). Tính giá trị của a + b + c (làm tròn kết quả đến hàng phần trăm).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C
Chọn hệ trục tọa độ Oxyz như hình vẽ
Do giả thiết khối chóp tứ giác đều S.ABCD nên ABCD là hình vuông.
Có A'(0; 0; 0), A(0; 0; 1), \(B\left( {0;\frac{1}{2};1} \right)\), \(B'\left( {0;\frac{1}{2};0} \right),D'\left( {\frac{1}{2};0;0} \right)\), \(D\left( {\frac{1}{2};0;1} \right)\).
I là trung điểm của BD nên \(I\left( {\frac{1}{4};\frac{1}{4};1} \right)\).
Ta có \(BD = \frac{{\sqrt 2 }}{2};IB = ID = \frac{{\sqrt 2 }}{4};SI = \sqrt {S{B^2} - I{B^2}} = \sqrt {0,{6^2} - {{\left( {\frac{{\sqrt 2 }}{4}} \right)}^2}} = \frac{{\sqrt {94} }}{{20}}\).
Vậy \(S\left( {\frac{1}{4};\frac{1}{4};\frac{{\sqrt {94} }}{{20}} + 1} \right)\). Suy ra a + b + c ≈ 1,98.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A
Theo đề ta có A(1,5; 1; −0,5); C(1; 3; 2); \(\overrightarrow {AC} = \left( { - 0,5;2;2,5} \right)\).
Gọi \(B\left( {x;y;0} \right)\)\( \Rightarrow \overrightarrow {AB} = \left( {x - 1,5;y - 1;0,5} \right)\).
Vì \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương nên \(\frac{{x - 1,5}}{{ - 0,5}} = \frac{{y - 1}}{2} = \frac{{0,5}}{{2,5}} = \frac{1}{5}\)\( \Rightarrow \left\{ \begin{array}{l}x = \frac{7}{5}\\y = \frac{7}{5}\end{array} \right.\).
Vậy \(B\left( {\frac{7}{5};\frac{7}{5};0} \right)\).
Lời giải
Đáp án đúng là: A
A. Theo đề bài ta có tọa độ của ra đa là (0; 0; 0), tọa độ của tàu thám hiểm là (30; 25; −15).
B. Khi đó khoảng cách giữa ra đa và tàu thám hiểm là:
C. \(d = \sqrt {{{\left( {30 - 0} \right)}^2} + {{\left( {25 - 0} \right)}^2} + {{\left( { - 15 - 0} \right)}^2}} = 5\sqrt {70} \approx 41,8\).
D. Vậy khoảng cách giữa ra đa và tàu thám hiểm là 41,8 km.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)