Câu hỏi:
07/05/2025 846Có hai hộp đựng các viên bi. Hộp thứ nhất đựng 5 bi đỏ và 3 bi vàng, hộp thứ hai đựng 4 bi đỏ và 2 bi vàng. Đầu tiên lấy ngẫu nhiên một bi từ hộp thứ nhất bỏ sang hộp thứ hai, sau đó lấy ngẫu nhiên một bi từ hộp thứ hai. Tìm xác suất để lần thứ nhất lấy được bi đỏ biết rằng khi lấy bi từ hộp thứ hai thì thu được bi đỏ.
Quảng cáo
Trả lời:
Đáp án đúng là: C
Gọi biến cố A: “Lấy bi đỏ từ hộp thứ nhất bỏ sang hộp thứ hai”;
Biến cố B: “Lấy được bi đỏ từ hộp thứ hai”.
Ta có \(P\left( A \right) = \frac{5}{8};P\left( {B|A} \right) = \frac{5}{7};P\left( {\overline A } \right) = \frac{3}{8};P\left( {B|\overline A } \right) = \frac{4}{7}\).
Có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = \frac{5}{8}.\frac{5}{7} + \frac{3}{8}.\frac{4}{7} = \frac{{37}}{{56}}\).
Vì vậy \(P\left( {A|B} \right) = \frac{{\frac{5}{8}.\frac{5}{7}}}{{\frac{{37}}{{56}}}} = \frac{{25}}{{37}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Gọi A là biến cố “Tài xế sử dụng điện thoại di động khi lái xe”,
B là biến cố “Tài xế lái xe gây tai nạn”.
Khi đó P(A) = 3% = 0,03; P(A|B) = 21% = 0,21.
Theo công thức Bayes: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\)\( \Rightarrow \frac{{P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,21}}{{0,03}} = 7\).
Vậy việc sử dụng điện thoại di động khi lái xe làm tăng xác suất gây tai nạn lên 7 lần.
Lời giải
Đáp án đúng là: A
Gọi B là biến cố “Người đó mắc bệnh”,
A là biến cố “Người đó được xét nghiệm có kết quả dương tính”.
Theo đề, P(B) = 1% = 0,01 \( \Rightarrow P\left( {\overline B } \right) = 1 - 0,01 = 0,99\);
P(A|B) = 95% = 0,95; \(P\left( {A|\overline B } \right) = 2\% = 0,02\).
Có \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\) = 0,01.0,95 + 0,02.0,99 = 0,0293.
Suy ra \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,95.0,01}}{{0,0293}} \approx 0,3242\).
Vậy xác suất người đó thực sự mắc bệnh là khoảng 32%.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.