Câu hỏi:

07/05/2025 394

Từ một hộp có 50 quả cầu trắng và 100 quả cầu đen. Người ta rút ngẫu nhiên không hoàn lại từng quả một và rút hai lần. Xác suất để lần đầu rút được quả trắng biết lần thứ hai cũng rút được quả trắng là \(\frac{a}{b}\) (\(\frac{a}{b}\) là phân số tối giản). Tính b – a.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Gọi A là biến cố “Lần đầu rút được quả màu trắng”;

B là biến cố “Lần thứ hai rút được quả màu trắng”.

Theo đề \(P\left( A \right) = \frac{1}{3};P\left( {\overline A } \right) = 1 - \frac{1}{3} = \frac{2}{3};\)\(P\left( {B|A} \right) = \frac{{C_{49}^1}}{{C_{149}^1}} = \frac{{49}}{{149}}\); \(P\left( {B|\overline A } \right) = \frac{{C_{50}^1}}{{C_{149}^1}} = \frac{{50}}{{149}}\).

Áp dụng công thức Bayes, ta có

\[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}} = \frac{{\frac{1}{3}.\frac{{49}}{{149}}}}{{\frac{1}{3}.\frac{{49}}{{149}} + \frac{2}{3}.\frac{{50}}{{149}}}} = \frac{{49}}{{149}}\].

Suy ra a = 49; b = 149. Do đó b – a = 100.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Gọi A là biến cố “Tài xế sử dụng điện thoại di động khi lái xe”,

B là biến cố “Tài xế lái xe gây tai nạn”.

Khi đó P(A) = 3% = 0,03; P(A|B) = 21% = 0,21.

Theo công thức Bayes: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\)\( \Rightarrow \frac{{P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,21}}{{0,03}} = 7\).

Vậy việc sử dụng điện thoại di động khi lái xe làm tăng xác suất gây tai nạn lên 7 lần.

Lời giải

Đáp án đúng là: A

Gọi B là biến cố “Người đó mắc bệnh”,

A là biến cố “Người đó được xét nghiệm có kết quả dương tính”.

Theo đề, P(B) = 1% = 0,01 \( \Rightarrow P\left( {\overline B } \right) = 1 - 0,01 = 0,99\);

P(A|B) = 95% = 0,95; \(P\left( {A|\overline B } \right) = 2\% = 0,02\).

Có \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\) = 0,01.0,95 + 0,02.0,99 = 0,0293.

Suy ra \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,95.0,01}}{{0,0293}} \approx 0,3242\).

Vậy xác suất người đó thực sự mắc bệnh là khoảng 32%.