Câu hỏi:
07/05/2025 17Một bệnh viên có hai phòng khám X và Y với khả năng lựa chọn của bệnh nhân là như nhau. Tỉ lệ bệnh nhân nam có ở phòng X và phòng Y lần lượt là 60% và 40%. Một người bệnh được chọn ngẫu nhiên từ hai phòng khám và biết người này là nam, xác suất để người bệnh đến từ phòng khám X là
Quảng cáo
Trả lời:
Đáp án đúng là: A
Biến cố A: “Bệnh nhân đến từ phòng khám X”; biến cố B: “Bệnh nhân là nam”.
Ta có P(A) = 0,5; P(B|A) = 0,6; \(P\left( {\overline A } \right) = 0,5;P\left( {B|\overline A } \right) = 0,4\).
Khi đó \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,5.0,6 + 0,5.0,4 = 0,5\).
Xác suất cần tính: \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,5.0,6}}{{0,5}} = 0,6\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta điều tra thấy ở một địa phương nọ có 3% tài xế sử dụng điện thoại di động khi lái xe. Người ta nhận thấy khi tài xế lái xe gây ra tai nạn thì có 21% là do tài xế sử dụng điện thoại. Hỏi việc sử dụng điện thoại di động khi lái xe làm tăng xác suất gây tai nạn lên bao nhiêu lần?
Câu 2:
Một bệnh viện sử dụng một xét nghiệm để phát hiện một loại bệnh với độ chính xác là 95% (nghĩa là 95% bệnh nhân mắc bệnh sẽ có kết quả dương tính). Xét nghiệm này cũng có tỷ lệ dương tính giả là 2% (nghĩa là 2% bệnh nhân không mặc bệnh cũng có kết quả dương tính). Biết rằng 1% dân số thực sự mắc bệnh này. Nếu một người nhận kết quả xét nghiệm dương tính, xác suất thực sự người đó mắc bệnh là bao nhiêu?
Câu 3:
Trường Phan Đình Phùng có 20% học sinh tham gia câu lạc bộ thể thao, trong số học sinh đó có 85% học sinh biết chơi bóng đá. Ngoài ra, có 10% số học sinh không tham gia câu lạc bộ thể thao cũng biết chơi bóng đá. Chọn ngẫu nhiên 1 học sinh của trường. Giả sử học sinh đó biết chơi bóng đá. Tính xác suất chọn được học sinh thuộc câu lạc bộ thể thao?
Câu 4:
Có hai hộp đựng các viên bi. Hộp thứ nhất đựng 5 bi đỏ và 3 bi vàng, hộp thứ hai đựng 4 bi đỏ và 2 bi vàng. Đầu tiên lấy ngẫu nhiên một bi từ hộp thứ nhất bỏ sang hộp thứ hai, sau đó lấy ngẫu nhiên một bi từ hộp thứ hai. Tìm xác suất để lần thứ nhất lấy được bi đỏ biết rằng khi lấy bi từ hộp thứ hai thì thu được bi đỏ.
Câu 5:
Hai máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất 35%, máy II sản xuất 65% tổng sản lượng. Tỉ lệ phế phẩm của các máy lần lượt là 0,3% và 0,7%. Chọn ngẫu nhiên 1 sản phẩm từ kho. Tính xác suất để chọn được phế phấm do máy I sản xuất?
Câu 6:
Trong một đợt khảo sát về nguy cơ mắc bệnh tim mạch, người ta thấy rằng tại thành phố X, tỷ lệ người dân có lối sống ít vận động là 25%, tỷ lệ người bị bệnh tim trong số người ít vận động là 60% , trong số người có lối sống tích cực là 10%. Hỏi khi gặp một người bị bệnh tim tại thành phố này thì xác suất người đó có lối sống ít vận động là bao nhiêu (kết quả làm tròn đến hàng phần trăm)?
Câu 7:
Từ một hộp có 50 quả cầu trắng và 100 quả cầu đen. Người ta rút ngẫu nhiên không hoàn lại từng quả một và rút hai lần. Xác suất để lần đầu rút được quả trắng biết lần thứ hai cũng rút được quả trắng là \(\frac{a}{b}\) (\(\frac{a}{b}\) là phân số tối giản). Tính b – a.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận