Câu hỏi:

09/05/2025 26

Lớp 6A có \(\frac{2}{3}\) số học sinh thích bóng đá, \(\frac{5}{{12}}\) số học sinh thích bóng bàn, \(\frac{{13}}{{15}}\) số học sinh thích bóng chuyền. Hỏi môn bóng nào được nhiều bạn của lớp yêu thích nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

So sánh: \(\frac{2}{3}\); \(\frac{5}{{12}}\); \(\frac{{13}}{{15}}\) (MC = 60)

Ta có: \(\frac{2}{3} = \frac{{40}}{{60}};\,\,\,\frac{5}{{12}} = \frac{{25}}{{60}};\,\,\,\,\,\frac{{13}}{{15}} = \frac{{52}}{{60}}\)

\(\frac{{25}}{{60}} < \frac{{40}}{{60}} < \frac{{52}}{{60}}\) nên \(\frac{5}{{12}} < \frac{2}{3} < \frac{{13}}{{15}}\)

Vậy môn bóng bán được nhiều học sinh yêu thích nhất.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Xét parabol trên mặt phẳng Oxy có đỉnh I (0; 3) và cắt trục Ox tại hai điểm (-1; 0) và

(1; 0).

Khi đó phương trình của parabol là y = -3x2 + 3

Khi đó diện tích một cánh hoa là: \(\int\limits_{ - 1}^1 {\left| { - 3{x^2} + 3} \right|dx} \)= 4 (dm2)

Diện tích 1 hình lục giác đều cạnh bằng 2 dm là: \(6.\frac{{{2^2}\sqrt 3 }}{4} = 6\sqrt 3 \)

Khi đó diện tích của một hình là \(6\sqrt 2  + 6.4 = 24 + 6\sqrt 2 \) (dm2)

Diện tích của bức tường là: 3 ´ 4 = 12 (m2) = 1200 (dm2)

Bạn Hoa có thể vẽ tối đa số hình có cùng kích thước lên bức tường cần trang trí là:

\(\left[ {1200:(24 + 6\sqrt 2 } \right] = 34\)

Vậy bạn Hoa có thể vẽ tối đa 34  hình có cùng kích thước trên lên bức tường cần trang trí

Lời giải

Lời giải:

Diện tích hình vuông là:

4 ´ 4 = 16 (cm2)

Diện tích 4 hình tròn nữa là:

4 ´ 3,14 ´ 2 = 25,12 (cm2)

Diện tích hình bông hoa là:

16 + 25,12 = 41,12 (cm2)

Đáp số: 41,12 cm2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay