Tính tổng:
\[A = \frac{{38}}{{25}} + \frac{9}{{10}} - \frac{{11}}{{15}} + \frac{{13}}{{21}} - \frac{{15}}{{28}} + \frac{{17}}{{36}} - ... + \frac{{197}}{{4851}} - \frac{{199}}{{4950}}\].
Tính tổng:
\[A = \frac{{38}}{{25}} + \frac{9}{{10}} - \frac{{11}}{{15}} + \frac{{13}}{{21}} - \frac{{15}}{{28}} + \frac{{17}}{{36}} - ... + \frac{{197}}{{4851}} - \frac{{199}}{{4950}}\].
Quảng cáo
Trả lời:
Lời giải:
\[A = \frac{{38}}{{25}} + \frac{9}{{10}} - \frac{{11}}{{15}} + \frac{{13}}{{21}} - \frac{{15}}{{28}} + \frac{{17}}{{36}} - ... + \frac{{197}}{{4851}} - \frac{{199}}{{4950}}\]
\[ = \frac{{38}}{{25}} + \frac{{18}}{{20}} - \frac{{22}}{{30}} + \frac{{26}}{{42}} - ... + \frac{{394}}{{9702}} - \frac{{398}}{{9900}}\]
\[ = \frac{{38}}{{25}} + 2\left( {\frac{9}{{20}} - \frac{{11}}{{30}} + \frac{{13}}{{42}} - ... + \frac{{197}}{{9702}} - \frac{{199}}{{9900}}} \right)\]
\[ = \frac{{38}}{{25}} + 2\left( {\frac{9}{{4 \cdot 5}} - \frac{{11}}{{5 \cdot 6}} + \frac{{13}}{{6 \cdot 7}} - ... + \frac{{197}}{{98 \cdot 99}} - \frac{{199}}{{99 \cdot 100}}} \right)\]
\[ = \frac{{38}}{{25}} + 2\left[ {\left( {\frac{1}{4} + \frac{1}{5}} \right) - \left( {\frac{1}{5} + \frac{1}{6}} \right) + \left( {\frac{1}{6} + \frac{1}{7}} \right) - ... + \left( {\frac{1}{{98}} + \frac{1}{{99}}} \right) - \left( {\frac{1}{{99}} + \frac{1}{{100}}} \right)} \right]\]
\[ = \frac{{38}}{{25}} + 2 \cdot \left( {\frac{1}{4} - \frac{1}{{100}}} \right)\]
\[ = \frac{{38}}{{25}} + 2 \cdot \left( {\frac{{25}}{{100}} - \frac{1}{{100}}} \right)\]
\[ = \frac{{38}}{{25}} + 2 \cdot \frac{{24}}{{100}}\]
\[ = \frac{{38}}{{25}} + 2 \cdot \frac{6}{{25}}\]
\[ = \frac{{38}}{{25}} + \frac{{12}}{{25}}\]
\[ = \frac{{50}}{{25}} = 2\]
Vậy A = 2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Xét parabol trên mặt phẳng Oxy có đỉnh I (0; 3) và cắt trục Ox tại hai điểm (-1; 0) và
(1; 0).
Khi đó phương trình của parabol là y = -3x2 + 3
Khi đó diện tích một cánh hoa là: \(\int\limits_{ - 1}^1 {\left| { - 3{x^2} + 3} \right|dx} \)= 4 (dm2)
Diện tích 1 hình lục giác đều cạnh bằng 2 dm là: \(6.\frac{{{2^2}\sqrt 3 }}{4} = 6\sqrt 3 \)
Khi đó diện tích của một hình là \(6\sqrt 2 + 6.4 = 24 + 6\sqrt 2 \) (dm2)
Diện tích của bức tường là: 3 ´ 4 = 12 (m2) = 1200 (dm2)
Bạn Hoa có thể vẽ tối đa số hình có cùng kích thước lên bức tường cần trang trí là:
\(\left[ {1200:(24 + 6\sqrt 2 } \right] = 34\)
Vậy bạn Hoa có thể vẽ tối đa 34 hình có cùng kích thước trên lên bức tường cần trang trí
Lời giải
Lời giải:
Diện tích hình vuông là:
4 ´ 4 = 16 (cm2)
Diện tích 4 hình tròn nữa là:
4 ´ 3,14 ´ 2 = 25,12 (cm2)
Diện tích hình bông hoa là:
16 + 25,12 = 41,12 (cm2)
Đáp số: 41,12 cm2
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.