Cho biết 7a + 2b chia hết cho 13 và a, b là số tự nhiên. Chứng minh 10a + b cũng chia hết cho 13.
Cho biết 7a + 2b chia hết cho 13 và a, b là số tự nhiên. Chứng minh 10a + b cũng chia hết cho 13.
Quảng cáo
Trả lời:
Lời giải:
Ta có 7a + 2b chia hết cho 13
Suy ra 10(7a + 2b) chia hết cho 13, hay 70a + 20b chia hết cho 13
70a + 7b + 13b chia hết cho 13
7(10a + b) + 13b.
Vì 13b chia hết cho 13 nên 7(10a + b) cũng chia hết cho 13.
Lại có 7 và 13 có ước chung lớn nhất bằng 1
Suy ra 10a + b chia hết cho 13.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Ta có: 72 : 6 = 12.
Lời giải
Lời giải:
\[{5^{x + 3}} + \frac{5}{6} \cdot {5^{x + 4}} = \frac{{275}}{2}\]
\[{5^{x + 3}} + \frac{5}{6} \cdot {5^{x + 3}} \cdot 5 = \frac{{275}}{2}\]
\[{5^{x + 3}} \cdot \left( {1 + \frac{5}{6} \cdot 5} \right) = \frac{{275}}{2}\]
\[{5^{x + 3}} \cdot \frac{{31}}{6} = \frac{{275}}{2}\]
\[{5^{x + 3}} = \frac{{275}}{2}:\frac{{31}}{6}\]
\[{5^{x + 3}} = \frac{{825}}{{31}}\] (vô lí)
Vậy không có giá trị x thỏa mãn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.