Biết 8p + 1 là số nguyên tố (p là số nguyên tố và p > 3), chứng minh rằng 4p + 1 là hợp số.
Biết 8p + 1 là số nguyên tố (p là số nguyên tố và p > 3), chứng minh rằng 4p + 1 là hợp số.
Quảng cáo
Trả lời:
Lời giải:
Vì p là số nguyên tố và p > 3 suy ra p = 3k + 1 hoặc p = 3k + 2.
Nếu p = 3k + 1 suy ra 8p + 1 = 8(3k + 1) + 1 = 24k + 8 + 1 = 24k + 9 = 3(8k + 3) chia hết cho 3.
Suy ra 8p + 1 là hợp số. Do đó trường hợp này không thỏa mãn.
Chứng tỏ p ≠ 3k + 1 nên p = 3k + 2.
Với p = 3k + 2 suy ra 4p + 1 = 4(3k + 2) + 1 = 12k + 8 + 1 = 12k + 9 = 3(4k + 3) chia hết cho 3.
Suy ra 4p + 1 là hợp số.
Vậy 4p + 1 là hợp số.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Ta có: 72 : 6 = 12.
Lời giải
Lời giải:
a(b2 + c2 + bc) + b(a2 + c2 + ac) + c(a2 + b2 + ab)
= ab2 + ac2 + abc + ba2 + bc2 + abc + ca2 + cb2 + abc
= (ab2 + a2b + abc) + (ac2 + a2c + abc) + (bc2 + b2c + abc)
= ab(b + a + c) + ac(c + a + b) + bc(c + b + a)
= (a + b + c)(ab + ac + bc).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.