Cho a, b, c là các số nguyên khác 0, a khác c sao cho \({a^2} + \frac{{{a^2}}}{{{b^2} + {c^2}}} = \frac{a}{c}\).
Chứng minh a2 + b2 + c2 không phải số nguyên tố?
Cho a, b, c là các số nguyên khác 0, a khác c sao cho \({a^2} + \frac{{{a^2}}}{{{b^2} + {c^2}}} = \frac{a}{c}\).
Chứng minh a2 + b2 + c2 không phải số nguyên tố?
Quảng cáo
Trả lời:
Lời giải:
Ta có: \(\frac{a}{c} = \frac{{{a^2} + {b^2}}}{{{c^2} + {b^2}}}\)
a (c2 + b2) = c (a2 + b2)
a c2 + ab2 = ca2 + cb2
ac (c – a) − b2 (c – a) = 0
(c – a) (ac − b2) = 0
Vì a ≠ c nên (a – c) ≠ 0
Do đó ac – b2 = 0
ac = b2
\(\sqrt {ac} = b\)
Giả sử: a2 + b2 + c2 là số nguyên tố
Ta có: a2 + b2 + c2 = a2 + ac + c2
= (a + c)2 – ac
= (a + c)2 – b2
= (a + c – b) (a + c + b)
\( = \left[ {{{\left( {\sqrt a } \right)}^2} - 2\sqrt {ac} + {{\left( {\sqrt c } \right)}^2} + \sqrt {ac} } \right]\left[ {{{\left( {\sqrt a } \right)}^2} - 2\sqrt {ac} + {{\left( {\sqrt c } \right)}^2} + 3\sqrt {ac} } \right]\)
\( = \left[ {{{(\sqrt a - \sqrt c )}^2} + \sqrt {ac} } \right]\left[ {{{\left( {\sqrt a - \sqrt c } \right)}^2} + 3\sqrt {ac} } \right]\)
Vì a2 + b2 + c2 là số nguyên tố nên có ước là 1.
Mà \({\left( {\sqrt a - \sqrt c } \right)^2} + \sqrt {ac} < {\left( {\sqrt a - \sqrt c } \right)^2} + 3\sqrt {ac} \)
Nên \({\left( {\sqrt a - \sqrt c } \right)^2} + \sqrt {ac} = 1\)
\({\left( {\sqrt a - \sqrt c } \right)^2} = 1 - \sqrt {ac} \)
Vì a ≠ c nên \(\sqrt a \ne \sqrt c \) suy ra \(\sqrt a - \sqrt c \ne 0\) nên \({\left( {\sqrt a - \sqrt c } \right)^2} < 0\)
Do đó \(1 - \sqrt {ac} > 0\) suy ra \(\sqrt {ac} < 1\) nên ac < 1. (1)
Mà a2 + b2 > 0 và c2 + b2 > 0 nên \(\frac{{{a^2} + {b^2}}}{{{c^2} + {b^2}}} > 0\)
Suy ra \(\frac{a}{c} > 0\) nên a,c cùng dấu nên ac > 0. (2)
Từ (1) và (2) suy ra 0 < ac <1.
Mà a, c là số nguyên nên ac là số nguyên.
Do đó không có giá trị a,c thỏa mãn.
Suy ra điều giả sử sai.
Vậy a2 + b2 + c2 không phải số nguyên tố.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Ta có: A = [−4; 2] và B = [−8; a + 2].
Mà A ∩ B có vô số phần tử nên −4 < a + 2 < 2 hoặc 2 < a + 2.
Suy ra −6 < a < 0 hoăc a > 0.
Lời giải

Do a, b, c là độ dài ba cạnh của tam giác ABC nên a + b – c ≠ 0.
Như vậy \(\frac{{{a^3} + {b^3} - {c^3}}}{{a + b - c}} = {c^2}\) khi
a3 + b3 − c3 = ac2 + bc2 – c3
a3 + b3 − ac2 + bc2 = 0
(a + b). (a2 – ab + b2) − c2 (a + b) = 0
(a + b) .( a2 – ab + b2 − c2 ) = 0
a2 – ab + b2 − c2 = 0 (do a + b ≠ 0)
a2 – ab + b2 = c2 (1)
Mặt khác theo định lý Cosin ta có: a2 + b2 – 2ab.cos \(\widehat C\)(2)
Từ (1) và (2) ta có: 2cos C = 1 nên cos C = \(\frac{1}{2}\)
Do đó \(\widehat C\)= 60°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

