Câu hỏi:

09/05/2025 54

Cho a, b, c là các số nguyên khác 0, a khác c sao cho \({a^2} + \frac{{{a^2}}}{{{b^2} + {c^2}}} = \frac{a}{c}\).

Chứng minh a2 + b2 + c2 không phải số nguyên tố?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Ta có: \(\frac{a}{c} = \frac{{{a^2} + {b^2}}}{{{c^2} + {b^2}}}\)

a (c2 + b2) = c (a2 + b2)

a c2 + ab2 = ca2 + cb2

ac (c – a) − b2 (c – a) = 0

(c – a) (ac − b2) = 0

Vì a ≠ c nên (a – c) ≠ 0

Do đó ac – b2 = 0

ac = b2

\(\sqrt {ac} = b\)

Giả sử: a2 + b2 + c2 là số nguyên tố

Ta có: a2 + b2 + c2 = a2 + ac + c2

= (a + c)2 – ac

= (a + c)2 – b2

= (a + c – b) (a + c + b)

\( = \left[ {{{\left( {\sqrt a } \right)}^2} - 2\sqrt {ac} + {{\left( {\sqrt c } \right)}^2} + \sqrt {ac} } \right]\left[ {{{\left( {\sqrt a } \right)}^2} - 2\sqrt {ac} + {{\left( {\sqrt c } \right)}^2} + 3\sqrt {ac} } \right]\)

\( = \left[ {{{(\sqrt a - \sqrt c )}^2} + \sqrt {ac} } \right]\left[ {{{\left( {\sqrt a - \sqrt c } \right)}^2} + 3\sqrt {ac} } \right]\)

Vì a2 + b2 + c2 là số nguyên tố nên có ước là 1.

\({\left( {\sqrt a - \sqrt c } \right)^2} + \sqrt {ac} < {\left( {\sqrt a - \sqrt c } \right)^2} + 3\sqrt {ac} \)

Nên \({\left( {\sqrt a - \sqrt c } \right)^2} + \sqrt {ac} = 1\)

\({\left( {\sqrt a - \sqrt c } \right)^2} = 1 - \sqrt {ac} \)

Vì a ≠ c nên \(\sqrt a \ne \sqrt c \) suy ra \(\sqrt a - \sqrt c \ne 0\) nên \({\left( {\sqrt a - \sqrt c } \right)^2} < 0\)

Do đó \(1 - \sqrt {ac} > 0\) suy ra \(\sqrt {ac} < 1\) nên ac < 1.          (1)

Mà a2 + b2 > 0 và c2 + b2 > 0 nên \(\frac{{{a^2} + {b^2}}}{{{c^2} + {b^2}}} > 0\)

Suy ra \(\frac{a}{c} > 0\) nên a,c cùng dấu nên ac > 0.     (2)

Từ (1) và (2) suy ra 0 < ac <1.

Mà a, c là số nguyên nên ac là số nguyên.

Do đó không có giá trị a,c thỏa mãn.

Suy ra điều giả sử sai.

Vậy a2 + b2 + c2 không phải số nguyên tố.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình x2 + 3x + m – 4 = 0. Giải phương trình tại m = 4.

Xem đáp án » 09/05/2025 117

Câu 2:

Với các số thực dương a, b, c thỏa mãn a2 + b2 + c2 + 2ab = 1. Tìm giá trị lớn nhất của P = ab + bc + ca – abc.

Xem đáp án » 09/05/2025 83

Câu 3:

Cho tam giác ABC vuông tại A có AB = 3a, AC = 4a. Tính độ dài vectơ BC.

Xem đáp án » 09/05/2025 78

Câu 4:

Cho a, b, c > 0 thỏa mãn ab + bc + ca + abc = 4. Chứng minh  \(\sqrt {ab} + \sqrt {bc} + \sqrt {ca} \le 3\)

Xem đáp án » 09/05/2025 69

Câu 5:

Tìm số tự nhiên có 3 chữ số abc biết \(\overline {abc} \) : 11 = a + b + c

Xem đáp án » 09/05/2025 58

Câu 6:

Hãy kể tên các tháng có 30 ngày trong năm 2025.

Xem đáp án » 09/05/2025 55
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay