Câu hỏi:

09/05/2025 103

Với các số thực dương a, b, c thỏa mãn a2 + b2 + c2 + 2ab = 1. Tìm giá trị lớn nhất của P = ab + bc + ca – abc.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Theo nguyên lý Dirichlet, trong ba số 2a – 1; 2b – 1; 2c – 1 tồn tại ít nhất hai số cùng dấu.

Giả sử (2a – 1)(2b – 1) ≥ 0

4ab – 2a – 2b + 1 ≥ 0

4ab ≥ 2ac + 2bc – c

2abc ≥ ac + bc – \(\frac{c}{2}\).

Khi đó thì P = ab + bc + ca – 2abc + abc ≤ ab + bc + ca – ac – bc + \(\frac{c}{2}\) + abc

= \(ab + abc + \frac{c}{2} \le \frac{{{a^2} + {b^2}}}{2} + abc + \frac{c}{2}\)

= \(\frac{{{a^2} + {b^2} + {c^2} + 2abc}}{2} - \frac{1}{2}\left( {{c^2} - c + \frac{1}{4}} \right) + \frac{1}{8}\)

=\(\frac{5}{8} - \frac{1}{2}{\left( {c - \frac{1}{2}} \right)^2} \le \frac{5}{8}\).

Đẳng thức xảy ra khi a = b = c = \(\frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Thay m = 4 vào phương trình x2 + 3x + m – 4 = 0, ta có

x2 + 3x = 0

x (x + 3) = 0

x = 0 hoặc x = −3

Vậy tại m = 4 thì x = 0 và x = −3 là nghiệm của phương trình

Lời giải

Lời giải:

Ta có: ab + bc + ca + abc =4

abc + 2(ab + bc + ca) + 4(a + b + c) + 8 = 12 + (ab + bc + ca) + 4(a + b + c)

(a + 2)(b + 2)(c + 2) = (a + 2)(b + 2)+(b + 2)(c + 2) + (c + 2) (a + 2)

\(\frac{1}{{a + 2}} + \frac{1}{{b + 2}} + \frac{1}{{c + 2}} = 1\)

\(\frac{2}{{a + 2}} + \frac{2}{{b + 2}} + \frac{2}{{c + 2}} = 2\)

3 − \(\left( {\frac{2}{{a + 2}} + \frac{2}{{b + 2}} + \frac{2}{{c + 2}}} \right)\) = 1

\(\frac{a}{{a + 2}} + \frac{b}{{b + 2}} + \frac{c}{{c + 2}} = 1\)

Đặt \(x = \frac{a}{{a + 2}}\); \(y = \frac{b}{{b + 2}}\); \(z = \frac{c}{{c + 2}}\).

Khi đó x + y + z = 1 và \(\frac{1}{x} = \frac{{a + 2}}{a} = 1 + \frac{2}{a}\)

\(\frac{2}{a} = \frac{1}{x} - 1 = \frac{{1 - x}}{x} = \frac{{y + z}}{x}\)

\(a = \frac{{2x}}{{x + y}}\)

Hoàn toàn tương tự, ta có \(b = \frac{{2y}}{{z + x}};c = \frac{{2z}}{{x + y}}\)

Lúc đó bất đẳng thức cần chứng minh trở thành:

\(\sqrt {\frac{{2x}}{{y + z}}.\frac{{2y}}{{z + x}}} + \sqrt {\frac{{2y}}{{z + x}}.\frac{{2z}}{{x + y}}} + \sqrt {\frac{{2z}}{{x + y}}.\frac{{2x}}{{y + z}}} \le 3\)

\(2\sqrt {\frac{x}{{y + z}}.\frac{y}{{z + x}}} + 2.\sqrt {\frac{y}{{z + x}}.\frac{z}{{x + y}}} + 2.\sqrt {\frac{z}{{x + y}}.\frac{x}{{y + z}}} \le 3\)

Theo bất đẳng thức AM – GM, ta có:

\(2\sqrt {\frac{x}{{y + z}} \cdot \frac{z}{{z + x}}} \le \frac{y}{{y + z}} + \frac{x}{{z + x}}\).                 (1)

\(2\sqrt {\frac{x}{{y + z}} \cdot \frac{z}{{x + y}}} \le \frac{x}{{x + y}} + \frac{z}{{y + z}}\).       (2)

\(2\sqrt {\frac{y}{{z + x}}.\frac{z}{{x + y}}} \le \frac{z}{{x + z}} + \frac{y}{{x + y}}\).                (3)

Cộng theo vế của (1), (2) và (3), ta được:

 \(\begin{array}{l}2\sqrt {\frac{x}{{y + z}}.\frac{y}{{z + x}}} + 2\sqrt {\frac{y}{{z + x}}.\frac{z}{{x + y}}} + 2\sqrt {\frac{z}{{x + y}}.\frac{x}{{y + z}}} \le \left( {\frac{x}{{x + y}} + \frac{y}{{x + y}}} \right) + \\\left( {\frac{y}{{y + z}} + \frac{z}{{y + z}}} \right) + \left( {\frac{z}{{z + x}} + \frac{x}{{z + x}}} \right) = 3\end{array}\)

Đẳng thức xảy ra khi x = y = z = \(\frac{1}{3}\) hay a = b = c = 1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP