Câu hỏi:

09/05/2025 152 Lưu

Cho tam giác ABC thỏa mãn \(\frac{{{a^3} + {b^3} - {c^3}}}{{a + b - c}} = {c^2}\). Chứng minh \(\widehat C\)= 60°.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

cho tam giác abc thỏa mãn a^3 b^3-c^3/a b-c=c^2 (ảnh 1)

Do a, b, c là độ dài ba cạnh của tam giác ABC nên a + b – c ≠ 0.

Như vậy \(\frac{{{a^3} + {b^3} - {c^3}}}{{a + b - c}} = {c^2}\) khi

a3 + b3 − c3 = ac2 + bc2 – c3

a3 + b3 − ac2 + bc2 = 0

(a + b). (a2 – ab + b2) − c2 (a + b) = 0

(a + b) .( a2 – ab + b2 − c2 ) = 0

 a2 – ab + b2 − c2 = 0 (do a + b ≠ 0)

 a2 – ab + b2 = c2 (1)

Mặt khác theo định lý Cosin ta có:  a2 + b2 – 2ab.cos \(\widehat C\)(2)

Từ (1) và (2) ta có: 2cos C = 1 nên cos C = \(\frac{1}{2}\)

Do đó \(\widehat C\)= 60°.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Ta có: A = [−4; 2] và B = [−8; a + 2].

Mà A ∩ B có vô số phần tử nên −4 < a + 2 < 2 hoặc 2 < a + 2.

Suy ra −6 < a < 0 hoăc a > 0.

Lời giải

Lời giải:

Ta có: SABC = SABD + SACD

\(\frac{1}{2}AB.AC.{\mathop{\rm Sin}\nolimits} A = \frac{1}{2}AB.AD\sin \widehat {BAD} + \frac{1}{2}AC.AD\sin \widehat {CAD}\)

\(2bc.\sin \frac{A}{2}\cos \frac{A}{2} = c.AD\sin \frac{A}{2} + b.AD.sin\frac{A}{2}\)

\(2bc.\sin \frac{A}{2}.\cos \frac{A}{2} = AD.\sin \frac{A}{2}.\left( {b + c} \right)\)

\(AD = \frac{{2bc.\cos \frac{A}{2}}}{{b + c}}\)(đpcm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP