Cho hình vẽ bên. Biết:
\(\widehat {xAC}\)= 120°; \(\widehat {ACB}\)= 80°; \(\widehat {CBy}\)= 20°. Chứng minh Ax // By

Cho hình vẽ bên. Biết:
\(\widehat {xAC}\)= 120°; \(\widehat {ACB}\)= 80°; \(\widehat {CBy}\)= 20°. Chứng minh Ax // By
Quảng cáo
Trả lời:

Kẻ Cz // By. (1)
Ta có: \(\widehat {zCB}\) và \(\widehat {CBy}\) là hai góc so le trong
Mà Cz // By nên \(\widehat {zCB}\) = \(\widehat {CBy}\)= 20°
Suy ra \(\widehat {zCA} = \widehat {ACB} - \widehat {zCB}\) = 80° − 20° = 40°
Lại có: \(\widehat {xAC}\) và \(\widehat {ACz}\) là hai góc trong cùng phía
Mà \(\widehat {xAC} + \widehat {ACz} = \)120° + 60° = 180°
Suy ra Ax // Cz. (2)
Từ (1) và (2) ta có Ax // By.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Ta có: A = [−4; 2] và B = [−8; a + 2].
Mà A ∩ B có vô số phần tử nên −4 < a + 2 < 2 hoặc 2 < a + 2.
Suy ra −6 < a < 0 hoăc a > 0.
Lời giải
Lời giải:
Ta có: SABC = SABD + SACD
\(\frac{1}{2}AB.AC.{\mathop{\rm Sin}\nolimits} A = \frac{1}{2}AB.AD\sin \widehat {BAD} + \frac{1}{2}AC.AD\sin \widehat {CAD}\)
\(2bc.\sin \frac{A}{2}\cos \frac{A}{2} = c.AD\sin \frac{A}{2} + b.AD.sin\frac{A}{2}\)
\(2bc.\sin \frac{A}{2}.\cos \frac{A}{2} = AD.\sin \frac{A}{2}.\left( {b + c} \right)\)
\(AD = \frac{{2bc.\cos \frac{A}{2}}}{{b + c}}\)(đpcm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.