Quảng cáo
Trả lời:
Lời giải:
x2 + xy + y2 = x – y
⇔ x2 + xy + y2 – x + y = 0
⇔ x2 + x(y – 1) + y2 – y = 0 (*)
Để phương trình (*) có nghiệm x khi ∆ ≥ 0
Hay (y – 1)2 – 4(y2 – y) ≥ 0
⇔ (y – 1)(3y – 1) ≤ 0
⇔ \(\frac{1}{3} \le y \le 1\)
Mà y nguyên nên y = 1
Suy ra: x = 0
Vậy (x;y) = (0;1)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
\(\left\{ \begin{array}{l}{x^2} + {y^2} + 2\left( {xy + 3x - y} \right) = 0\\{x^2} + {y^2} + 4x - 2y = 0\left( 2 \right)\end{array} \right.\)
Trừ phương trình thứ nhất cho phương trình thứ hai, ta được:
2(xy + 3x – y) – 4x + 2y = 0
2xy + 2x = 0
2x(y + 1) = 0
Suy ra: x = 0 hoặc y = -1
+ Với x = 0, thay vào (2) ta có: y2 – 2y = 0 ⇔ \(\left[ \begin{array}{l}y = 0\\y = 2\end{array} \right.\)
+ Với y = -1, thay vào (2) ta có: x2 + 4x + 3 = 0 ⇔ \(\left[ \begin{array}{l}x = - 1\\x = - 3\end{array} \right.\)
Lời giải
Lời giải:
ĐKXĐ: \(x \ge \frac{1}{2}\)
\({x^2} - 6x + 2 = 2\left( {2 - x} \right)\sqrt {2x - 1} \)
⇔ \({x^2} + 2x\sqrt {2x - 1} + 2x - 1 = 4\left( {2x - 1} \right) + 4\sqrt {2x - 1} + 1\)
⇔ \({\left( {x + \sqrt {2x - 1} } \right)^2} = {\left( {2\sqrt {2x - 1} + 1} \right)^2}\) (*)
Do \(x \ge \frac{1}{2}\) nên \(\left\{ \begin{array}{l}x + \sqrt {2x - 1} > 0\\2\sqrt {2x - 1} + 1 > 0\end{array} \right.\)
Nên (*) tương đương: \(x + \sqrt {2x - 1} = 2\sqrt {2x - 1} + 1\)
⇔ \(x - 1 = \sqrt {2x - 1} \)
⇔ \(\left\{ \begin{array}{l}x > 1\\{\left( {x - 1} \right)^2} = 2x - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}x > 1\\x = 2 + \sqrt 2 \end{array} \right.\)
Vậy \(x = 2 + \sqrt 2 \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.