Giải hệ phương trình: \(\left\{ \begin{array}{l}{x^3} = 3x + 4 + y\\{y^3} = 3y + z - 6\\{z^3} = 12z - x + 18\end{array} \right.\)
Giải hệ phương trình: \(\left\{ \begin{array}{l}{x^3} = 3x + 4 + y\\{y^3} = 3y + z - 6\\{z^3} = 12z - x + 18\end{array} \right.\)
Quảng cáo
Trả lời:
Lời giải:
\(\left\{ \begin{array}{l}{x^3} = 3x + 4 + y\\{y^3} = 3y + z - 6\\{z^3} = 12z - x + 18\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {x - 2} \right){\left( {x + 1} \right)^2} = y + 2\\\left( {y + 2} \right){\left( {y - 1} \right)^2} = z - 4\\\left( {z - 4} \right){\left( {z + 2} \right)^2} = 2 - x\end{array} \right.\)
Nhân các vế với nhau ta được:
(x – 2)(x + 1)2(y + 2)(y – 1)2(z – 4)(z + 2)2 = (y + 2)(z – 4)(2 – x)
Ta thấy với x = 2; y = -2; z = 4 thì thỏa mãn phương trình
Vì nếu (x;y;z) ≠ (2;-2;4) ta được: [(x + 1)(y − 1)(z + 2)]2 = −1 (vô lý)
Vậy (x; y; z) = (2;-2;4)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
\(\left\{ \begin{array}{l}{x^2} + {y^2} + 2\left( {xy + 3x - y} \right) = 0\\{x^2} + {y^2} + 4x - 2y = 0\left( 2 \right)\end{array} \right.\)
Trừ phương trình thứ nhất cho phương trình thứ hai, ta được:
2(xy + 3x – y) – 4x + 2y = 0
2xy + 2x = 0
2x(y + 1) = 0
Suy ra: x = 0 hoặc y = -1
+ Với x = 0, thay vào (2) ta có: y2 – 2y = 0 ⇔ \(\left[ \begin{array}{l}y = 0\\y = 2\end{array} \right.\)
+ Với y = -1, thay vào (2) ta có: x2 + 4x + 3 = 0 ⇔ \(\left[ \begin{array}{l}x = - 1\\x = - 3\end{array} \right.\)
Lời giải
Lời giải:
ĐKXĐ: \(x \ge \frac{1}{2}\)
\({x^2} - 6x + 2 = 2\left( {2 - x} \right)\sqrt {2x - 1} \)
⇔ \({x^2} + 2x\sqrt {2x - 1} + 2x - 1 = 4\left( {2x - 1} \right) + 4\sqrt {2x - 1} + 1\)
⇔ \({\left( {x + \sqrt {2x - 1} } \right)^2} = {\left( {2\sqrt {2x - 1} + 1} \right)^2}\) (*)
Do \(x \ge \frac{1}{2}\) nên \(\left\{ \begin{array}{l}x + \sqrt {2x - 1} > 0\\2\sqrt {2x - 1} + 1 > 0\end{array} \right.\)
Nên (*) tương đương: \(x + \sqrt {2x - 1} = 2\sqrt {2x - 1} + 1\)
⇔ \(x - 1 = \sqrt {2x - 1} \)
⇔ \(\left\{ \begin{array}{l}x > 1\\{\left( {x - 1} \right)^2} = 2x - 1\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}x > 1\\x = 2 + \sqrt 2 \end{array} \right.\)
Vậy \(x = 2 + \sqrt 2 \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.