Cho các biểu thức A= x4 + x; B = x4 + x + 1. Tìm số tự nhiên x để A và B đều là số nguyên tố.
Cho các biểu thức A= x4 + x; B = x4 + x + 1. Tìm số tự nhiên x để A và B đều là số nguyên tố.
Quảng cáo
Trả lời:

Lời giải:
Ta thấy A và B là hai tự nhiên số liên tiếp nên có 2 trường hợp xảy ra:
- A chẵn thì B lẻ
- A lẻ thì B chẵn
Mà x là số tự nhiên nên x4 + x + 1 > x4 + x hay B > A
Kết hợp với giả thiết A và B là số nguyên tố
Nên A phải là số chẵn, B là số lẻ (B > A)
Do đó: A = 2
⇒ B = A + 1 = 2 + 1 = 3
⇒ x4 + x = 2
⇒ x = 1
Vậy x = 1.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
\(\left\{ \begin{array}{l}{x^2} + {y^2} + 2\left( {xy + 3x - y} \right) = 0\\{x^2} + {y^2} + 4x - 2y = 0\left( 2 \right)\end{array} \right.\)
Trừ phương trình thứ nhất cho phương trình thứ hai, ta được:
2(xy + 3x – y) – 4x + 2y = 0
2xy + 2x = 0
2x(y + 1) = 0
Suy ra: x = 0 hoặc y = -1
+ Với x = 0, thay vào (2) ta có: y2 – 2y = 0 ⇔ \(\left[ \begin{array}{l}y = 0\\y = 2\end{array} \right.\)
+ Với y = -1, thay vào (2) ta có: x2 + 4x + 3 = 0 ⇔ \(\left[ \begin{array}{l}x = - 1\\x = - 3\end{array} \right.\)
Lời giải
Lời giải:
Nhân phương trình thứ hai với 3 và cộng với phương trình thứ nhất ta được:
(x + 1)3 + 3y2(x + 1) – 30y(x + 1) + 75(x + 1) = 0
⇔ (x + 1)[(x + 1)2 + 3(y – 5)2] = 0
⇔ \(\left[ \begin{array}{l}x = - 1\\y = 5\end{array} \right.\)
Với x = -1 thì ta có: y2 – 2y – 15 = 0 ⇔ \(\left[ \begin{array}{l}y = - 3\\y = 5\end{array} \right.\)
Với y = 5 thì (x + 1)3 = 0 suy ra x = -1
Vậy (x;y) = {(-1;-3), (-1;5)}
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.